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Preface

This book gives an introduction to the mathematical, probabilistic and nu-
merical methods used in the modern theory of option pricing. It is intended
as a textbook for graduate and advanced undergraduate students, but I hope
it will be useful also for researchers and professionals in the financial industry.

Stochastic calculus and its applications to the arbitrage pricing of financial
derivatives form the main theme. In presenting these, by now classic, topics,
the emphasis is put on the more quantitative rather than economic aspects.
Being aware that the literature in this field is huge, I mention the following
incomplete list of monographs whose contents overlap with those of this text:
in alphabetic order, Avellaneda and Laurence [14], Benth [43], Bjork [47],
Dana and Jeanblanc [84], Dewynne, Howison and Wilmott [340], Dothan [100],
Duffie [102], Elliott and Kopp [120], Epps [121], Follmer and Schied [134],
Glasserman [158], Huang and Litzenberger [171], Ingersoll [178], Karatzas
[200; 202], Lamberton and Lapeyre [226], Lipton [239], Merton [252], Musiela
and Rutkowski [261], Neftci [264], Shreve [310; 311], Steele [315], Zhu, Wu
and Chern [349].

What distinguishes this book from others is the attempt to present the
matter by giving equal weight to the probabilistic point of view, based on the
martingale theory, and the analytical one, based on partial differential equa-
tions. The present book does not claim to describe the latest developments in
mathematical finance: that target would indeed be very ambitious, given the
speed of progress of research in the field. Instead, I have chosen to develop
some of the essential ideas of the classical pricing theory to devote space to
the fundamental mathematical and numerical tools when they arise. Thus I
hope to provide a sound background of basic knowledge which may facilitate
the independent study of newer problems and more advanced models.

The theory of stochastic calculus, for continuous and discontinuous pro-
cesses, constitutes the bulk of the book: Chapters 3 on stochastic processes, 4
on Brownian integration and 9 on stochastic differential equations may form
the material for an introductory course on stochastic calculus. In these chap-
ters, I have constantly sought to combine the theoretical concepts to the in-

WWW.FOREX-WAREZ.COM

ANDREYBBRV@EMAIL.COM SKYPE: ANDREYBBRY


Андрей
forex-warez.com


VI Preface

sight on the financial meaning, in order to make the presentation less abstract
and more motivated: in fact many theoretical concepts naturally lend them-
selves to an intuitive and meaningful economic interpretation.

The origin of this book can be traced to courses on option pricing which
I taught at the master program in Quantitative Finance of the University of
Bologna, which I have directed with Sergio Polidoro since its beginning, in
2004. I wrote the first version as lecture notes for my courses. During these
years, 1 substantially improved and extended the text with the inclusion of
sections on numerical methods and the addition of completely new chapters
on stochastic calculus for jump processes and Fourier methods. Nevertheless,
during these years the original structure of the book remained essentially
unchanged.

I am grateful to many people for the suggestions and helpful comments
with which supported and encouraged the writing of the book: in particular
I would like to thank several colleagues and PhD students for many valuable
suggestions on the manuscript, including David Applebaum, Francesco Car-
avenna, Alessandra Cretarola, Marco Di Francesco, Piero Foscari, Paolo Fos-
chi, Ermanno Lanconelli, Antonio Mura, Cornelis Oosterlee, Sergio Polidoro,
Valentina Prezioso, Enrico Priola, Wolfgang Runggaldier, Tiziano Vargiolu,
Valeria Volpe. I also express my thanks to Rossella Agliardi, co-author of
Chapter 13, and to Matteo Camaggi for helping me in the translation of the
book.

It is greatly appreciated if readers could forward any errors, misprints or
suggested improvements to: andrea.pascucci@unibo.it
Corrections received after publication will be posted on the website:
http://www.dm.unibo.it/~pascucci/

Bologna, November 2010 Andrea Pascucci
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General notations

N={1,2,3,...} is the set of natural numbers

No ={0,1,2,3,...} is the set of non-negative integers
Q is the set of rational numbers

R is the set of real numbers

R0 =10, +00[

R>o = [07 -I-OO[

St =10, T[xR¥ is a strip in RV+!

% = B(RY) is the Borel g-algebra in RY

|H| or m(H) denote the Lebesgue measure of H € A
1 is the indicator function of H, p. 606

Oy = 6% is the partial derivative with respect to z

For any a,b € R,

e aAb=min{a,b}
e aVb=max{a,b}
e ot = max{a,0}
e o =max{—a,0}

For any N x d-matrix A = (a;;),

A* is the transpose of A
trA is the trace of A
rankA is the rank of A

b |A|:“§:iagj

i=1j=1
e ||Al| = sup |Az]
|z|=1

Note that ||A] < |A|. The point z € R¥ is identified with a column vector
N x 1 and

N
Py=(ry)=z-y=> iy
i=1

denotes the Euclidean scalar product in RV .
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XVI General notations

Depending on the context, 7 denotes the Fourier transform or the o-algebra
of a probability space. The Fourier transform of a function f is denoted by f.

Shortenings

e A := B means that “by definition, A equals B”

e r.v. = random variable

e s.p. = stochastic process

e a.s. = almost surely

e a.e. = almost everywhere

e iid. = independent and identically distributed (referred to random varia-

bles)

mg = martingale

PDE = Partial Differential Equation
SDE = Stochastic Differential Equation

Function spaces

mB: space of H-measurable functions, p. 608

m%By: space of bounded functions in m%, p. 608

BV: space of functions with bounded variation, p. 127

Lip: space of Lipschitz continuous functions, p. 679

Lip,,.: space of locally Lipschitz continuous functions, p. 679

C*: space of functions with continuous derivatives up to order k € Ny
CF: space of functions in C* bounded together with their derivatives
Ck+e: space of functions differentiable up to order k € Ny with partial
derivatives that are Holder continuous of exponent a €0, 1]

C’{ZJCF“: space of functions differentiable up to order k € Ny with partial
derivatives that are locally Holder continuous of exponent a €]0, 1]

C§°: space of test functions, i.e. smooth functions with compact support,
p. 678

C12: space of functions u = u(t, =) with continuous second order deriva-
tives in the “spatial” variable z € RN and continuous first order derivative
in the “time” variable ¢, p. 631

C%: space of parabolic Holder continuous functions of exponent «, p. 258
LP: space of functions integrable of order p

L¥ : space of functions locally integrable of order p

WkP: Sobolev space of functions with weak derivatives up to order k in
LP, p. 679

SP: parabolic Sobolev space of functions with weak second order deriva-
tives in LP, p. 265



General notations XVII

Spaces of processes

LL?: space of progressively measurable processes in LP([0,T] x {2), p. 141
LY .: space of progressively measurable processes X such that X(w) €
LY ([0,T]) for almost any w, p. 159

e A.: space of continuous processes (X¢):e[o, 1], Fi-adapted and such that

X1, = E{ sup Xf]
0<t<T

is finite, p. 280

e . /#?: linear space of right continuous martingales (M¢)¢efo,r) such that
My =0 a.s. and E [MZ] is finite, p. 115

e //2: linear subspace of the continuous martingales of .#2, p. 115

o M 1oc: space of continuous local martingales M such that My = 0 a.s.,
p. 161






1

Derivatives and arbitrage pricing

A financial derivative is a contract whose value depends on one or more se-
curities or assets, called underlying assets. Typically the underlying asset is a
stock, a bond, a currency exchange rate or the quotation of commodities such
as gold, oil or wheat.

1.1 Options

An option is the simplest example of a derivative instrument. An option is a
contract that gives the right (but not the obligation) to its holder to buy or
sell some amount of the underlying asset at a future date, for a prespecified
price. Therefore in an option contract we need to specify:

e an underlying asset;
e an exercise price K, the so-called strike price;
e a date T, the so-called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to
sell. An option is called Furopean if the right to buy or sell can be exercised
only at maturity, and it is called American if it can be exercised at any time
before maturity.

Let us consider a European Call option with strike K, maturity 7' and
let us denote the price of the underlying asset at maturity by Sp. At time T
we have two possibilities (cf. Figure 1.1): if S > K, the payoff of the option
is equal to St — K, corresponding to the profit obtained by exercising the
option (i.e. by buying the underlying asset at price K and then selling it at
the market price St). If S < K, exercising the option is not profitable and
the payoff is zero. In conclusion the payoff of a European Call option is

(ST - K)Jr = max{ST - K, O}

Figure 1.2 represents the graph of the payoff as a function of St: notice that
the payoff increases with St and gives a potentially unlimited profit. Analo-

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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gously, we see that the payoff of a European Put option is
(K — S7)t = max{K — Sr,0}.

Call and Put options are the basic derivative instruments and for this reason
they are often called plain vanilla options. Combining such types of options
it is possible to build new derivatives: for example, by buying a Call and a
Put option with the same underlying asset, strike and maturity we obtain a
derivative, the so-called Straddle, whose payoff increases the more St is far
from the strike. This kind of derivative is interesting when one expects a wide
movement of the price of the underlying asset without being able to foresee
the direction. Evidently the pricing of this option can be reformulated in terms
of the pricing of plain vanilla options. On the other hand, in the real-world
markets there exists a great deal of derivatives (usually called exotic) having
very complicated structures: the market of such derivatives is in continuous
expansion and development. One can consult, for example, Zhang [344] for an
encyclopedic exposition of exotic derivatives.

1.1.1 Main purposes

The use of derivatives serves mainly two purposes:

e hedging the risk;
e speculation.

For example, let us consider an investor holding the stock S: buying a Put
option on S, the investor gets the right to sell S in the future at the strike price
and therefore he/she hedges the risk of a crash of the price of S. Analogously,
a firm using oil in its business might purchase a Call option to have the right
to buy oil in the future at the fixed strike price: in this way the firm hedges
the risk of a rise of the price of oil.

In recent years the use of derivatives has become widespread: not long ago
a home loan was available only with fixed or variable rate, while now the offer
is definitely wider. For example, it is not hard to find “protected” loans with
capped variable rate: this kind of structured products contains one or more
derivative instruments and pricing such objects is not really straightforward.

Derivatives can be used to speculate as well: for instance, buying Put op-
tions is the simplest way to get a profit in case of a market crash. We also
remark that options have a so-called leverage effect: relatively minor move-
ments in stock price can result in a huge change of the option price. For
example, let us denote by Sy the current price of the underlying asset and
let us suppose that $1 is the price of a Call option with K = Sy = $10 and
maturity one year. We suppose that, at maturity, ST = $13: if we buy one
unit of the underlying asset, i.e. we invest $10, we would have a $3 profit (i.e.
30%); if we buy a Call option, i.e. we invest only $1, we would have a $2 profit
(i.e. 200%). On the other hand, we must also bear in mind that, if S = $10,
by investing in the Call option we would lose all our money!
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1.1.2 Main problems

An option is a contract whose final value is given, this depending on the price
of the underlying asset at maturity which is not known at present. Therefore
the non-trivial problem of pricing arises, i.e. the determination of the “ratio-
nal” or fair price of the option: this price is the premium that the buyer of
the option has to pay at the initial time to get the right guaranteed by the
contract.

The second problem is that of hedging: we have already pointed out that a
Call option has a potentially unlimited payoff and consequently the institution
that sells a Call option exposes itself to the risk of a potentially unlimited
loss. A bank selling a derivative faces therefore the problem of finding an
investment strategy that, by using the premium (i.e. the money received when
the derivative was sold), can replicate the payoff at maturity, whatever the
final value of the underlying asset will be. As we are going to see shortly, the
problems of pricing and hedging are deeply connected.

1.1.3 Rules of compounding

Before going any further, it is good to recall some notions on the time value
of money in finance: receiving $1 today is not like receiving it after a month.
We point out also that it is common practice to consider as the unit of time
one year and so, for example, T'= 0.5 corresponds to six months.

The rules of compounding express the dynamics of an investment with
fixed risk-free interest rate: to put it simply, this corresponds to deposit the
money on a savings account. In the financial modeling, it is always assumed
that a (locally!) risk-free asset, the so-called bond, exists. If B; denotes the
value of the bond at time ¢ € [0, T, the following rule of simple compounding
with annual interest rate r

Br = Bo(l + TT),

states that the final value Br is equal to the initial value By plus the interest
ByrT, corresponding to the interest over the period [0,7] accrued on the
initial wealth. Therefore, by the rule of simple compounding, the interest is
only paid on the initial wealth.

Alternatively we may consider the period [0,T], divide it into N sub-
intervals [t,—_1,t,] whose common length is % and assume that the simple

interest is paid at the end of every sub-interval: we get

T T\? 7\V
BT:BtN71 (1+TN) :BtN72 (1+TN> ::BO (1+TN) .

! This means that the official interest rate is fixed and risk-free over a brief period
of time (e.g. some weeks) but in the long term it is random as well.
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By taking the limit as NV — oo, i.e. by assuming that the simple interest is paid
more and more frequently, we obtain the formula of continuous compounding
with annual interest rate r:

Br = Bye'T. (1.1)

Formula (1.1) expresses the final wealth in terms of the initial investment.
Conversely, since to obtain a final wealth (at time T') equal to B, it is necessary
to invest the amount Be~"7 at the initial time, this amount is usually called
discounted value of B.

While the rule of simple compounding is the one used in the market, the
rule of continuous compounding is generally used in theoretical contexts and
particularly in continuous-time models.

1.1.4 Arbitrage opportunities and Put-Call parity formula

Broadly speaking an arbitrage opportunity is the possibility of carrying out
a financial operation without any investment, but leading to profit without
any risk of a loss. In real-world markets arbitrage opportunities do exist,
even though their life span is very brief: as soon as they arise, the market
will reach a new equilibrium because of the actions of those who succeed in
exploiting such opportunities. From a theoretical point of view it is evident
that a sensible market model must avoid this type of profit. As a matter of
fact, the no-arbitrage principle has become one of the main criteria to price
financial derivatives.

The idea on which arbitrage pricing is built is that, if two financial in-
struments will certainly have the same value? at future date, then also in this
moment they must have the same value. If this were not the case, an obvious
arbitrage opportunity would arise: by selling the instrument that is more ex-
pensive and by buying the less expensive one, we would have an immediate
risk-free profit since the selling position (short position) on the more more
expensive asset is going to cancel out the buying position (long position) on
the cheaper asset. Concisely, we can express the no-arbitrage principle in the
following way:

Xr<Yr - X; < Y;, t<T, (12)

where X; and Y; are the values of the two financial instruments respectively.
From (1.2) in particular it follows that

Xr=Ypr — Xi=Y, t<T. (13)

Now let us consider a financial-market model that is free from arbitrage op-
portunities and consists of a bond and a stock .S, that is the underlying asset

2 We note that we need not know the future values of the two financial instruments,
but only that they will certainly be equal.
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of a Call option ¢ and of a Put option p, both of European type with maturity
T and strike K:

er = (Sr— K)T, pr = (K —Sp)*.

We denote by r the risk-free interest rate and we assume that the bond follows
the dynamics given by (1.1). On the basis of arbitrage arguments, we get the
classical Put-Call parity formula, which establishes a relation between the
prices ¢ and p, and some upper and lower estimates for such prices. It is
remarkable that the following formulas are “universal”’, i.e. independent of
the market model and based only on the general no-arbitrage principle.

Corollary 1.1 (Put-Call parity) Under the previous assumptions, we
have
Ct =Pt + St — KB_T(T_t), t e [0, T} (14)

Proof. It suffices to note that the investments
K
Xi=c+ 5By and Y;=p+ 5,
Br

have the same final value
XT = YT = maX{K, ST}
The claim follows from (1.3). O

If the underlying asset pays a dividend D at a date between t and T', the
Put-Call parity formula becomes

Ct+ = Dt + St —D — Keir(T?t).
Corollary 1.2 (Estimates from above and below for European options)

For every t € [0,T] we have

+
(St — Keir(T?t)) < < St,
N (1.5)
(Ke_T(T_t) — St> <pp < Ke "0,

Proof. By (1.2)
Ci, Pt > 0. (16)

Consequently by (1.4) we get
ce > S — Ke_T(T_t).

Moreover, since ¢; > 0, we get the first estimate from below. Finally ¢ < St
and so by (1.2) we get the first estimate from above. The second estimate can
be proved analogously and it is left as an exercise. a
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1.2 Risk-neutral price and arbitrage pricing

In order to illustrate the fundamental ideas of derivative pricing by arbitrage
arguments, it is useful to examine a simplified model in which we consider
only two moments in time, the initial date 0 and the maturity 7. As usual we
assume that there exists a bond with risk-free rate r and initial value By = 1.
Further, we assume that there is a risky asset S whose final value depends
on some random event: to consider the simplest possible model, we assume
that the event can assume only two possible states Ey and Es in which St
takes the values ST and S~ respectively. To fix the ideas, let us consider the
outcome of a throw of a die and let us put, for example,

E, ={1,2,3,4}, E; ={5,6}.

In this case S represents a bet on the outcome of a throw of a die: if we get a
number between 1 and 4 the bet pays ST, otherwise it pays S~. The model
can be summarized by the following table:

Time 0 T

Bond 1 e’

St ifE
Risky asset| ? Sr=14 1 b
S if EQ.

The problem is to determine the value Sy, i.e. the price of the bet.

1.2.1 Risk-neutral price
The first approach is to assign a probability to the events:
P(Ey)=p and P(E;)=1-np, (1.7)

where p €]0, 1[. For example, if we roll a die it seems natural to set p = %. In
this way we can have an estimate of the final average value of the bet

Sr=pST+(1-p)S—.

By discounting that value at the present time, we get the so-called risk-neutral
price: _
So=e"T(pStT+(1-p)S7). (1.8)

This price expresses the value that a risk-neutral investor assigns to the risky
asset (i.e. the bet): indeed the current price is equal to the future discounted
expected profit. On the basis of this pricing rule (that depends on the proba-
bility p of the event FEj), the investor is neither inclined nor adverse to buy
the asset.
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1.2.2 Risk-neutral probability

Let us suppose now that Sy is the price given by the market and therefore it
is a known quantity. The fact that Sy is observable gives information on the
random event that we are considering. Indeed by imposing that Sy = Sy, i.e.
that the risk-neutral pricing formula holds with respect to some probability
defined in terms of ¢ €]0,1[ as in (1.7), we have

Sp=e"T (qSJr +(1- q)Sf) ,
whence we get

GTTSO—S_ B _S+—€TTSO
ST 5 T a5

Evidently ¢ €]0,1[ if and only if

q:

S~ <etsy < ST,

and, on the other hand, if this were not the case, obvious arbitrage oppor-
tunities would arise. The probability defined in (1.9) is called risk-neutral
probability and it represents the unique probability to be assigned to the events
E4, Es so that Sy is a risk-neutral price.

Therefore, in this simple setting there exists a bijection between prices
and risk-neutral probabilities: by calculating the probabilities of the events,
we determine a “rational” price for the risky asset; conversely, given a market
price, there exists a unique probability of events that is consistent with the
observed price.

1.2.3 Arbitrage price

Let us suppose now that there are two risky assets S and C, both depending
on the same random event:

Time 0 T

Bond 1 e’

St if By
Risk t S| S St = ’
isky asse 0 T {S‘ it B,

ct it By,
C~ if Es.

Risky asset C| 7?7 Cr = {

To fix the ideas, we can think of C' as an option with underlying the risky asset
S. If the price Sy is quoted by the market, we can infer the corresponding risk-
neutral probability ¢ defined as in (1.9) and then find the neutral-risk price
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of C' under the probability ¢:
Co=e"T(qCt +(1—-q)C7). (1.10)

This pricing procedure seems reasonable and consistent with the market price
of the underlying asset. We emphasize the fact that the price Cy in (1.10) does
not depend on a subjective estimation of the probabilities of the events E7, Fs,
but it is implicitly contained in the quoted market value of the underlying asset.
In particular this pricing method does not require to estimate in advance the
probability of random events. We say that Cj is the risk-neutral price of the
derivative C.

An alternative approach is based upon the assumption of absence of arbi-
trage opportunities. We recall that the two main problems of the theory and
practice of derivatives are pricing and hedging. Let us suppose to be able to
determine an investment strategy on the riskless asset and on the risky asset
S replicating the payoff of C. If we denote the value of this strategy by V', the
replication condition is

Vpr =Cr. (1.11)

From the no-arbitrage condition (1.3) it follows that
Co=Vy

is the only price guaranteeing the absence of arbitrage opportunities. In other
terms, in order to price correctly (without giving rise to arbitrage opportu-
nities) a financial instrument, it suffices to determine an investment strategy
with the same final value (payoff): by definition, the arbitrage price of the
financial instrument is the current value of the replicating strategy. This price
can be interpreted also as the premium that the bank receives by selling the
derivative and this amount coincides with the wealth to be invested in the
replicating portfolio.

Now let us show how to construct a replicating strategy for our simple
model. We consider a portfolio which consists in holding a number « of shares
of the risky asset and a number § of bonds. The value of such a portfolio is
given by

V =aS + 6B.

By imposing the replicating condition (1.11) we have

aSt + BT =C* if Fq,

aS™ + et =C~ if o,
which is a linear system, with a unique solution under the assumption St #
S~. The solution of the system is

Cct—C- _ _pStCT—Cts

=gi_g > P=e g

(%
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therefore the arbitrage price is equal to

Ct—C"  _p8TCT ST
Coadrl=Sg et T
rT — + rT

R +€ So—s 75 — € So -

—¢ (C st-5 ¢ sr_5 )~

(recalling the expression (1.9) of the risk-neutral probability)
—e 7T (CJrq + 07(1 - q)) = 50,

where Cj is the risk-neutral price in (1.10). The results obtained so far can be
expressed in this way: in an arbitrage-free and complete market (i.e. in which
every financial instrument is replicable) the arbitrage price and the risk-neutral
price coincide: they are determined by the quoted price Sy, observable on the
market.

In particular the arbitrage price does not depend on the subjective estima-
tion of the probability p of the event E;. Intuitively, the choice of p is bound
to the subjective vision on the future behaviour of the risky asset: the fact of
choosing p equal to 50% or 99% is due to different estimations on the events
FEq, Es. As we have seen, different choices of p determine different prices for
S and C on the basis of formula (1.8) of risk-neutral valuation. Nevertheless,
the only choice of p that is consistent with the market price Sy is that corre-
sponding to p = ¢ in (1.9). Such a choice is also the only one that avoids the
introduction of arbitrage opportunities.

1.2.4 A generalization of the Put-Call parity

Let us consider again a market with two risky assets S and C, but Sy and Cj
are not quoted:

Time 0 T
Riskless asset| 1 e’
Lo
Risky asset S| 7 St = S %f Ei,
S— if B»,
Cct ifE
Risky asset C| ? Cr = 1 b
Cc- if EQ.

We consider an investment on the two risky assets

V =aS+pC
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and we impose that it replicates at maturity the riskless asset, Vy = €™
aSt +BCT =T if By,
aS™ +8C~ =T if Fs.

As we have seen earlier, we obtain a linear system that has a unique solution
(provided that C and S do not coincide):

ct—-C- - St — 5=
~ _ . rT — _ rT
o= g g P s —os
By the no-arbitrage condition (1.3), we must have Vj =1 i.e.
aSy + pCy = 1. (1.12)

Condition (1.12) gives a relation between the prices of the two risky assets
that must hold in order not to introduce arbitrage opportunities. For fixed S,
the price Cp is uniquely determined by (1.12), in line with the results of the
previous section. This fact must not come as a surprise: since the two assets
“depend” on the same random phenomenon, the relative prices must move
consistently.

Formula (1.12) also suggests that the pricing of a derivative does not nec-
essarily require that the underlying asset is quoted, since we can price a deriva-
tive using the quoted price of another derivative on the same underlying asset.
A particular case of (1.12) is the Put-Call parity formula expressing the link
between the price of a Call and a Put option on the same underlying asset.

1.2.5 Incomplete markets

Let us go back to the example of die rolling and suppose that the risky assets
have final values according to the following table:

Time 0 T
Riskless asset 1 erT
+tif {1,2,3,4
Risky asset S | Sp S = S 1 {1,2,3,4},
S if {5,6},
+oif {1,2
Riskless asset C| 7 Cr = ¢ 1 {1,2},
C™ if {3,4,5,6}.

Now we set

Ey={1,2}, E,={3,4}, E;={56}
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If we suppose to be able to assign the probabilities to the events
P(Ey) = p1, P(Ez) = pa, P(E3) =1—p1 —pa,

where p1,p2 > 0 and p; + p2 < 1, then the risk-neutral prices are defined just
as in Section 1.2.1:

So =e —rT

—rT

PSSt +paStT+(1—p1—p2)S7)
(p1+p2) ST+ (1—p1—p2)S7)
P1CT +p2C7 + (1 —p1—p2)C7)
pCT+(1—p1)C7).

Oo =€ -7

—rT

Conversely, if Sy is quoted on the market, by imposing Sy = §0, we obtain

So=e"" (ST +@ST+(1—q—q)S7)

and so there exist infinitely many® risk-neutral probabilities.
Analogously, by proceeding as in Section 1.2.3 to determine a replicating
strategy for C, we obtain

aSt + pe'’ =Ct if £,
aSt 4+ et = C- if Fy, (1.13)
aS™ + Be’T = C~ if Bs.

In general this system is not solvable and therefore the asset C' is not replica-
ble: we say that the market model is incomplete. In this case it is not possible
to price C on the basis of replication arguments: since we can only solve two
out of three equations, we cannot build a strategy replicating C' in all the
possible cases and we are able to hedge the risk only partially.

We note that, if («, 3) solves the first and the third equation of the system
(1.13), then the terminal value Vi of the corresponding strategy is equal to

o+ if By,
Vr = ct if EQ,

With this choice (and assuming that CT > C~) we obtain a strategy that
super-replicates C.
Summing up:

e in a market model that is free from arbitrage opportunities and complete,
on one hand there exists a unique the risk-neutral probability measure;

3 Actually, it is possible to determine a unique risk-neutral probability if we assume
that both So and Cy are observable.
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on the other hand, for every derivative there exists a replicating strategy.
Consequently there exists a unique risk-neutral price which coincides with
the arbitrage price;

in a market model that is free from arbitrage opportunities and incomplete,
on one hand there exist infinitely many risk-neutral probabilities; on the
other hand not every derivative is replicable. Consequently there exist in-
finitely many risk-neutral prices but it is not possible, in general, to define
the arbitrage price.






2

Discrete market models

In this chapter we describe market models in discrete time to price and hedge
European and American-style derivatives. We present the classical model in-
troduced by Cox, Ross and Rubinstein in [78] and we mention briefly the
pricing problem in incomplete markets. General references on topics covered
in this chapter are Dana and Jeanblanc [84], Féllmer and Schied [134], Lam-
berton and Lapeyre [226], Pliska [282], Shreve [310], van der Hoek and Elliott
[329]: we also mention Pascucci and Runggaldier [277] where several examples
and exercises can be found.

2.1 Discrete markets and arbitrage strategies

We consider a discrete-market model where, for a fixed time interval [0, T,
we suppose that all transactions take place only at times

O=tg<ti <---<ty=T.

To fix the ideas, tg denotes today’s date and ¢y is the expiration date of a
derivative. Let us recall that the unit of time is the year.

The market consists of one riskless asset (bond) B and d risky assets
S = (S',...,8%) that are stochastic processes defined on a probability space
(2, F, P). We assume:

(H1) 2 has a finite number of elements, F = P(§2) and P({w}) > 0 for any
w e (2.

The dynamics of the bond is deterministic: if B,, denotes the price of the bond
at time t,,, we have

By=1
o (2.1)
B, = Bn_1(1+m), n=1,...,N,
where r,,, such that 1 + r,, > 0, denotes the risk-free rate in the n-th period

[tn—1,tn]. Occasionally we also call B the bank account.

Pascucci A.: PDE and Martingale Methods in Option Pricing
© Springer-Verlag Italia 2011
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The risky assets have the following stochastic dynamics: if S% denotes the
price at time ¢, of the i-th asset, then we have

ER
S0 € Roo, . (2.2)
Si=8L_  (1+puk), n=1,...,N,

where p is a real random variable such that 1+ ,u;l > 0, which represents the
yield rate of the i-th asset in the n-th period [t,,—1,¢,]. Then S* = (S?)n—0,... N
is a discrete stochastic process on (£2, F, P) and we say that (S, B) is a discrete
market on the probability space (£2,F, P).
We set
( "'7”%)7 1<n <N,

and consider the filtration (F,,) defined by

= {0, 2}, (2.3)
2.4

U(Mlv"'vﬂ‘n)v 1<n<N.

The o-algebra F,, represents the amount of information available in the market
at time ¢, (cf. Appendix A.1.6): note that, by (2.2), we also have F,, =

o(So,...,Sy) for 0 <n < N. Formula (2.3) is equivalent to the fact that the
prices S3, ..., S¢ of the assets at the initial time are observable and so they are
deterministic, i.e. positive numbers not random variables (cf. Example A.38).
In the sequel we shall also assume:

(H2) Fn=7F.

2.1.1 Self-financing and predictable strategies

Definition 2.1 A strategy (or portfolio) is a stochastic process in RI+!
(Oé,ﬁ) = (a'}u R aivﬁn)n:l

In the preceding definition, o, (resp. 3,) represents the amount of the asset S°
(resp. bond) held in the portfolio during the n-th period [t,—_1,t,]. Therefore
we denote the value of the portfolio (o, §) at time t,, by

Véa,ﬁ) = anSn + ﬁana n = ]" ce ’N’ (25)
and
(a,) ZO‘ 50+ﬂ130
=1
In (2.5)

anana n=1,...,N,

M.FOREX-WM.COM
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denotes the scalar product in R?. The value V(8 = (Véa’ﬁ))nzo,_“,]\; is a real
stochastic process in discrete time: to shorten notations, sometimes we simply

write V,, in place of V,Sa’ﬁ). We point out that negative values of o, 3, are
allowed since short selling of shares or borrowing from the bank are permitted.

Definition 2.2 A strategy (a, ) is self-financing if the relation
V,Eg’lﬁ) = apSp_1+ ﬁan,1 (26)
holds for everyn=1,..., N.

The self-financing property (2.6) can interpreted as follows:

at time t,,_1 the wealth at our disposal is Vrgf’lﬁ) =au_1S0-1+ Bn_1Bn_1

and we re-balance the strategy with the new quantities (an, Bn) in such a
way that we do not modify the overall value of the portfolio.

For example, if at ty = 0 we have at our disposal the initial wealth V[, we
construct the strategy (ag, /1) in such a way that its value oy Sy + 1By is
equal to V. Note that (o, 3,) denotes what the portfolio built at time ¢,_1
is composed of.

Example 2.3 In the case of one risky asset (i.e. d = 1) (2.6) is equivalent to

Snfl

n = Pn—1 — (On — Qn_— .
= s = ( DE

The previous formula shows how 3, must vary in a self-financing portfolio if,
at time t,_1, we change the amount of the risky asset from «,_; to «,,. Note
that, in the particular case d = 0, a portfolio is self-financing if and only if it
is constant. a

The variation, from time ¢,,_1 to t,, of the value of a self-financing strategy
(a, B) is given by

Vn(o“ﬁ) — qug’ﬁ) = Oln(Sn - Sn—l) + ﬂn(Bn - Bn—l) (2'7)

and therefore it is caused only by the variation of the prices of the assets and
not by the fact that we have injected or withdrawn funds. Therefore, in a
self-financing strategy we establish the wealth we want to invest at the initial
time and afterwards we do not inject or withdraw funds.

In what follows we consider only investment strategies based upon the
amount of information available at the moment (of course foreseeing the fu-
ture is not allowed). Since in a self-financing strategy the rebalancing of the
portfolio from (a,—1,8n—1) to (o, Bn) occurs at time ¢,_1, it is natural to
assume that («, 8) is predictable:

Definition 2.4 A strategy (o, 38) is predictable if (cn, Br) is Fn—1-measurable
for everyn=1,...,N.
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Notation 2.5 We denote by A the family of all self-financing and predictable
strategies of the market (S, B).

The self-financing condition establishes a relationship between the processes
«a and [: as a consequence, it turns out that a strategy in A is identified by
(o, B) or equivalently by Vy and « where V € R is the initial value of the
strategy and « is a d-dimensional predictable process. Indeed we have the
following:

Lemma 2.6 The value of a self-financing strategy («, 8) is determined by its
initial value Vy and recursively by

d
Vo =Vao1(L4m) + >l Sh oy (il — 1) (2.8)

i=1
form=1,... N.

Proof. By (2.7), the variation of a self-financing portfolio in the period
[tn—1,tn] is equal to

Vi=Va1=an (Sn - Sn—l) + Bn (Bn - Bn—l)
d
= Al Si 4y + BuBn1rn = (2.9)
=1

(since, by (2.6), we have 8, Bp—1 = V-1 — @pnSn—1)

d
= Z ol St (M% — rn) + 7 Vo1
i=1

and the claim follows. a

Proposition 2.7 Given Vy € R and a predictable process «, there exists a
unique predictable process 5 such that (o, 3) € A and Vo(a’ﬂ) = V.

Proof. Given V; € R and a predictable process «, we define the process

anl - ansnfl

ﬂn = B, . y

where (V,,) is recursively defined by (2.8). Then by construction (3,) is pre-
dictable and the strategy («, ) is self-financing. O

Remark 2.8 Given (a, ) € A, by summing over n in (2.9) we get

Vo=Vo+9g?  n=1,..., N, (2.10)
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where
98P =" (ak (Sk — Sk-1) + Br (Bk — Br-1))
k=1
4 (2.11)
-y (z o St + ﬂwm)
k=1 \i=1
defines the process of the gain of the strategy. O
2.1.2 Normalized market
For a fixed asset Y = (Y,), we define by
~. St ~ B
S, =+ B, = ==, 2.12

the normalized market with respect to Y. In the normalized market we ob-
viously have Y = 1 and the prices of the other assets are denominated in
units of the asset Y: for this reason Y is usually called a numeraire. Often
Y plays the part of the non-risky asset B corresponding to the investment in
a bank account: in this case S? is also called the discounted price of the i-th
asset. In practice, by discounting one can compare quoted prices at different
times. ~

Let us now consider the discounted market S, that is we assume that B is
the numeraire. Given a strategy («, ), we set

‘7(04,5) — Vrgaﬂ)
n Bn

Then the self-financing condition becomes

‘7(0“’8) :angnfl +6’n7 n= 1""’N’

n—1

or equivalently
‘Zfa’ﬁ) :‘7756_!716) + ay, (gn _gn—l) 5 n= 17 N.

)

Therefore Lemma 2.6 has the following extension.

Lemma 2.9 The discounted value of a self-financing strategy (o, 3) is uni-
quely determined by its initial value Vi and recursively by

d
Ve =T 4 S (8- i)
i=1

form=1,... N.
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The following formula, analogous to (2.10), holds:
V(@) = vy 4+ G (2.13)

where
nga) = ZO% <§k - gk—l)
k=1

is the normalized gain related to the predictable process «. Note that in general
(a,8)
G,({l) is different from 22— and that Ggf') does not depend on 3. We also recall

that ‘70 = Vp since By = 1 by assumption.

2.1.3 Arbitrage opportunities and admissible strategies

We recall that A denotes the family of self-financing and predictable strategies
of the market (S, B).

Definition 2.10 We say that (o, 8) € A is an arbitrage strategy (or simply
an arbitrage) if the value V = V(@B is such that!

Z) Vo = 0,‘
and there exists n > 1 such that

it) Vi, >0 P-a.s.;
i) P(V,, > 0) > 0.

We say that the market (S, B) is arbitrage-free if the family A does not contain
arbitrage strategies.

An arbitrage is a strategy in A that does not require an initial investment,
does not expose to any risk (V,, > 0 P-a.s.) and leads to a positive value with
positive probability. In an arbitrage-free market it is not possible to have such
a sure risk-free profit by investing in a predictable and self-financing strategy.

The absence of arbitrage opportunities is a fundamental assumption from
an economic point of view and is a condition that every reasonable model
must fulfill. Clearly, the fact that there is absence of arbitrage depends on
the probabilistic model considered, i.e. on the space (£2,F, P) and on the
kind of stochastic process (S, B) used to describe the market. In Section 2.1.4
we give a mathematical characterization of the absence of arbitrage in terms
of the existence of a suitable probability measure, equivalent to P, called
martingale measure. Then, in Paragraph 2.3 we examine the very easy case of
the binomial model, so that we see the practical meaning of the concepts we

! By assumption (H1), the empty set is the only event with null probability: al-
though it is superfluous to write P-a.s. after the (in-)equalities, it is convenient to
do so to adapt the presentation to the continuous case in the following chapters,
where the (in-)equalities hold indeed only almost surely.
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have introduced. In particular we see that in the binomial model the market
is arbitrage-free under very simple and intuitive assumptions.

We allowed the values of a strategy to be negative (short-selling), but it
seems reasonable to require that the overall value of the portfolio does not
take negative values.

Definition 2.11 A strategy (o, 3) € A is called admissible if
V,Sa’ﬂ) >0 P-a.s.

for everyn < N.

Implicitly the definition of arbitrage includes the admissibility condition or,
more precisely, in a discrete market every arbitrage strategy can be modified
to become admissible. We remark that this result does not generalize to the
continuous-time case.

Proposition 2.12 A discrete market is arbitrage-free if and only if there
exrist no admissible arbitrage strategies.

Proof. We suppose that there exist no admissible arbitrage strategies and
we have to show that no arbitrage opportunity exists. We prove the thesis
by contradiction: we suppose there exists an arbitrage strategy (o, 3) and we
construct an admissible arbitrage strategy (o, 3).

By assumption, VO(O"B) = a150 + 1By = 0 and there exists n (it is not
restrictive to suppose n = N) such that «,, S, + 3, B > 0 a.s. and P(«,,S, +
BrnBr > 0) > 0. If (a, §) is not admissible there exist k¥ < N and F' € Fj, with
P(F) > 0 such that

apSE + BB <0 on FF and «,S, + 06,8, >0 as. fork<n<N.

Then we define a new arbitrage strategy as follows: o/, =0, 8/, =0 on 2\ F
for every n, while on F

/ 0, n <k, 3 0, n <k,
@, = 3 n —
" [67°%) n > k7 ﬁn_(ak5k+ﬁkBk>7 n>k
It is straightforward to verify that (a’,’) is an arbitrage strategy and it is
admissible. O

2.1.4 Equivalent martingale measure

We consider a discrete market (S, B) on the space (£2,F,P) and fix a nu-
meraire Y that is a prices process in (S, B). More generally, in the sequel we
will take as numeraire the value of any strategy («,3) € A, provided that
V(@8 is positive. In this section we characterize the property of absence of
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arbitrage in terms of the existence of a new probability measure equivalent? to
P and with respect to which the normalized price processes are martingales.
We give the following important:

Definition 2.13 An equivalent martingale measure (in short, EMM) with
numeraire Y is a probability measure Q on (£2,F) such that:

i) Q is equivalent to P;
i1) the Y -normalized prices are Q-martingales, that is

S 1—1 Sn Bn_1 B
"L RSN Fl =EQ | " | Fu 2.14
Ynfl |:Yn | Fn o Ynfl Yn | fn e ( )

for everyn=1,... ,N.

Remark 2.14 Consider the particular case Y = B and denote by S,
the discounted prices. If ) is an EMM with numeraire B, by the martmgale
property we also have

Sk_EQ[MFk} 0<k<n<N,
and consequently
E2[S,| = EQ [EQ[S, | Fo|| =5, n<N. (2.15)

Formula (2.15) has an important economic interpretation: it states that the
expectations of the future normalized prices are equal to the current prices.
Therefore (2.15) is a risk-neutral pricing formula in the sense of Section 1.2.1:
the mean of gn with respect to the measure ) corresponds to the value given
by an investor who reckons that the current market-prices of the assets are
correct (and so he/she is neither disposed nor averse to buy the assets). For
this reason, @ is also called a risk-neutral probability.

Instead, the probability measure P is usually called objective or real-world
probability since the dynamics of the random variables p,, is usually given
under the probability P and these variables (or the parameters of the model)
have to be determined a priori from observations on the market or on the basis
of the historical data on the stocks. In other terms, the random variables p,
(that are an “input” that any discrete model needs in order to be used) have
to be estimated by means of observations of the real world. ]

We emphasize that the notion of EMM depends on the numeraire con-
sidered. Further, we notice that, since @) is equivalent to P, the market is
arbitrage-free under the measure P if and only if it is arbitrage-free under Q.

The next result, in view of its importance, is commonly known as First
Fundamental Theorem of asset pricing.

2 That is, having the same null and certain events, cf. Appendix A.5.1.
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Theorem 2.15 (First Fundamental Theorem of asset pricing) A di-
screte market is arbitrage-free if and only if there exists at least one EMM.

We defer the proof of Theorem 2.15 to Section 2.2.3 and we analyze now some
important consequences of the definition of EMM.

The following result exhibits a fundamental feature of self-financing pre-
dictable portfolios: they preserve the martingale property, that is if (S, B) is
a martingale and (a, 3) € A then also V() is a martingale.

Proposition 2.16 Let Q be an EMM with numeraire Y and («,3) € A.
Then V(@8 = (#) is a Q-martingale:

78 _ ge [Vn(a’ﬁ) |fn_1} . n=1,...,N. (2.16)
In particular the following risk-neutral pricing formula holds:
V(P = gQ ma,ﬂ)} . n<N. (2.17)

Conversely, if Q is a measure equivalent to P and for every (a,3) € A,
equation (2.16) holds, then @ is an EMM with numeraire Y.

Proof. For simplicity we only consider the case Y = B. The result is an
immediate consequence of formula (2.13) which basically expresses the fact
that (a, 8) is self-financing if and only if V(@B s the transform of S by
(cf. Definition A.120). Then, since « is predictable, the claim follows directly
from Proposition A.121. However, for the sake of clarity, it seems to be useful
to go through the proof again: by the self-financing condition (2.6), we have

‘771(0{75) = ‘775?’1}6) + an(gn - §n—l)
and by taking the conditional expectation given F,,_;, we get
E¢ [ﬁyga,ﬁ) | .7:”71:| = ‘F;;Si’lﬁ) + E° [O&n(gn — gnfl) ‘ .7:7171] =

(by the properties of conditional expectation, Proposition A.107-(7), since «
is predictable)
= ‘7756_%15) + anEQ |:§n - §H,1 | ~7:n71:| = ‘7n(g,1,8)
by (2.14). The converse is trivial.
The following result expresses the main consequence, fundamental from a
practical point of view, of the condition of absence of arbitrage: if two self-

financing predictable strategies have the same terminal value, then they must
have the same value at all preceding times.
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Proposition 2.17 (No arbitrage principle) In an arbitrage-free market,

if (v, ), (o, ") € A and
VD = v plas,

then
Vn(aﬁ) = V,Eo‘/’ﬂ/) P-a.s.

for everyn =0,...,N.

Proof. Since the market is arbitrage-free, there exists an EMM @ with
numeraire Y. The claim follows from the fact that V(8 V(@8 are Q-
martingales with the same terminal value. Indeed, since the measures P,Q

are equivalent, we have Vji,o"ﬁ ) = Vjs,a,’ﬁ ) Q-a.s. and so
V(s — pQ [ngfa,ﬁ) |]_—n} — pQ [Vjsla/ﬁ/) |fn:| _ P8,
for every n < N. |

Remark 2.18 Analogously, in an arbitrage-free market, if (o, ), (o/,3') € A
and L

VR > vl P plas,
then

’

V(@h) > ye8) pag.
for every n =0,..., N. m]

2.1.5 Change of numeraire

The choice of the numeraire is not in general unique. From a theoretical point
of view, we shall see that a suitable choice of the numeraire can make compu-
tations easier (cf. Example 2.37); from a practical point of view, it is possible
that different investors use different numeraires, e.g. when market prices can
be expressed in different currencies (Euros, Dollars, etc.). In this section we
study the relation among martingale measures relative to different numeraires:
specifically, we give an explicit formula for the Radon-Nikodym derivative of
a EMM with respect to another, thus showing how to switch between diffe-
rent numeraires. The main tool that we are going to use is Bayes’ formula in

Theorem A.113.

Theorem 2.19 In a discrete market (S, B), let Q be an EMM with numeraire

Y and let X be a positive adapted process such that ();—7) s a Q-martingale

(X represents the value process of another asset or strategy to be considered
as the new numeraire). Then the measure QX defined by

dQ* _ Xy (YN>_1

dQ ~— Xo \ Yo

V. (2.18)
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s such that

Y, E@ [YZ |]—‘n} = X, B9 {XZ |f-n] . n<N,  (219)
N N

for every random variable Z. Consequently QX is an EMM with numeraire
X.

Remark 2.20 We may rewrite formula (2.19) in the form

EQ [DY(n,N)Z | ] = E® [DX(n, N)Z | F], n<N, (2:20)
where x Y
An Y _ In <
DX(n,N) = Xy D" (n,N) Yo n < N,

denote the discount factors from N to n with respect to the numeraires X
and Y, respectively.

Proof. In (2.18), L := dQ denotes the Radon-Nikodym derivative of QX

with respect to @ and therefore
EQY (7] = EQ[Z1)
for any random variable Z.

From (2.18) we infer

EQY (7| F] = E°
[Z | 7l Yo Ly

Y, [ X\
7 <—”) | ]—'n] , n < N. (2.21)
Indeed by Bayes’ formula we have

EQzL|F] B¢ {Z% \fn}

B (7| Fal = =5 -
BLIZ] " g5 7]
YN n
and (2.21) follows, since by assumption (%) is a ()-martingale and therefore
we have
_ X
Y,

Now (2.19) is a simple consequence of (2.21):

Y, (X,\ ' X,.Z 7,
Yy \ Xn Xy

Z
Y, E¢ [Y— \ ]—‘n] = E@
N

(by (2.21))

<[z
—x, B9 | 2 £
X, E {w'”]'
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Eventually from (2.19) it follows that QX is an EMM with numeraire Y:
indeed, by definition of EMM we have

SN
5 {YN M }
(by (2.19) with Z = Sy)
x [ Sy
— X EQ° |2
B3 7.

for n < N, and an analogous formula holds for B. O

Corollary 2.21 Under the assumptions of Theorem 2.19, for any n < N
and A € F,,, we have

X, (YV,\ !
XA =FQ |22 (22 1 2.22
Q" (A) X, \ v Al (2.22)
that is
dQ* X, (Y,\7
dg 7T Xy \ v,

Proof. We have
Q¥(A) = B [14] =

(by (2.18))

(using that A € F,)

= E9 |14E9

o

and the thesis follows from the fact that % is a Q-martingale. O

2.2 European derivatives

We consider an arbitrage-free discrete market (S, B) on the space (2, F, P).

Definition 2.22 A FEuropean-style derivative is an Fy-measurable random
variable X on (2, F, P).
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To fix the ideas, X represents the terminal value (or payoff) of an option
with maturity 7. The Fy-measurability condition describes the fact that X
depends on the price process S, that is S*, ..., ¢ are the underlying assets of
the derivative X: actually, under our assumption (H2), Fy = F and therefore
X is simply a random variable on (£2, F, P).

e A derivative X is called path-independent if it depends only on the terminal
value of the underlying assets:

X = F(Sy), (2.23)

where F' is a given function. This is the typical case of a European Call
option with strike K for which we have

F(z)=(z - K)™, x> 0;

e a derivative X is called path-dependent if it depends also on the values of
the underlying assets at times before maturity: for example, in the case of
a Look-back option we have

X =Sy — min S,.
N o<nen T

The main problems in the study of a derivative X are:

1) the pricing problem, i.e. to determine a price for the derivative such that
no arbitrage opportunities are introduced in the market;

2) the replication problem, i.e. to determine a strategy (if it exists) (o, 5) € A
that assumes the same value of the derivative at maturity:

Vjsfa’ﬁ) =X a.s.

If such a strategy exists, X is called replicable and (v, ) is called replicating
strategy.

In an arbitrage-free market, the first problem is solvable but the solution
is not necessarily unique: in other words, it is possible to find at least one
value for the price of a derivative in such a way that the absence of arbitrage
is preserved. Regarding the second problem, we saw in Chapter 1 that it is
rather easy to construct a market model that is arbitrage-free, but in which
some derivatives are not replicable. On the other hand, if a replicating strategy
(ar, B) for the derivative X exists, then by the no arbitrage principle (in the
form of Proposition 2.17) Vo(a’ﬁ ) is the unique value for the initial price of X
that does not introduce arbitrage opportunities.

2.2.1 Pricing in an arbitrage-free market

We introduce the families super and sub-replicating portfolios for the deriva-
tive X:

AL ={(a,B) e AV > X}, Ay ={(a,8) € A| VP < X}
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Given (o, ) € Aj}, the initial value Vo(a’ﬁ ) represents the price at which

everyone would be willing to sell the derivative: indeed Vo(a’ﬁ ) is an initial
investment sufficient to build a strategy that super-replicates X. To fix ideas
we denote by Hy the (unknown and possibly not unique) initial price of X: it
is clear that we necessarily must have

Hy <V (a,8) € AL. (2.24)

If inequality (2.24) were not true, by introducing in the market the derivative

at the price Hy > Vo(o?ﬁ) for a certain strategy (&, 3) € A}, one could create
an obvious arbitrage opportunity which consists in selling the derivative and
buying the strategy (@, 3).

Analogously we must have

Hy > V™ (a,8) € Ax.

Indeed Vo(a”g ), for (o, 3) € Ay, represents the price at which everyone would
be willing to buy the derivative since, by selling («, 5) and buying the deriva-
tive, one could make a risk-free profit.

In conclusion any fair initial price Hy of X must satisfy

sup V{)(O"B) < Hy < inf Vo(a”@). (2.25)
(,B)EA% (a,B)eAL

Now, assuming that the market is arbitrage-free, there exists (and in ge-
neral it is not unique) an EMM @Q. By Theorem 2.19 it is not restrictive to
assume that B is the numeraire. Then with respect to ), the discounted prices
of the assets and the discounted value of any strategy in A are martingales:
in particular, they coincide with the conditional expectation of their terminal
values. For the sake of consistency, it seems reasonable to price the derivative
X in an analogous way: for a fixed EMM @, we put

~ HCQ X

HY ==n .= EQ | = | £,|, =0,...,N, 2.26

and we say that H? is the risk-neutral price of X with respect to the EMM Q.
Actually, definition (2.26) verifies the consistency assumption (2.25) for

the price of X, i.e. it does not introduce arbitrage opportunities. Indeed we

have the following:

Lemma 2.23 For every EMM @ with numeraire B, we have
7 (a.B) 0| X . = (a,B)
sup V% <E¥|— | F,| < inf  V(®F)
(a,B)EAy By (a.8)eAY

forn=0,...,N.



2.2 European derivatives 29

Proof. If (o, 3) € Ay then, by Proposition 2.16, we have
7(a.8) _ g@ [jrles) Q| X
Vied) = g [V | | < B | Ful,
Bx

and an analogous estimate holds for (a, 8) € A%. O

Remark 2.24 The family of EMMs is a convex set, i.e. if Q1,Q2 are mar-
tingale measures with numeraire B, by the linearity property of conditional
expectation then also any linear combination of the form

)‘Ql + (]- - A)QQ» Ae [07 1]7

is an EMM. As a simple consequence we have that the set of discounted initial
prices E¢ {%} is convex and can consist of a single point only or otherwise

it can be a non-trivial interval: in this last case it is an open interval (see, for
example, Theorem 5.33 in [134]). O

The following theorem contains the definition of the arbitrage price of a
replicable derivative.

Theorem 2.25 Let X be a replicable derivative in an arbitrage-free market.
Then for every replicating strategy (o, 8) € A and for every EMM @ with
numeraire B, we have

X 7504,6)
}: n=0,...,N. (2.27)

E?| | F
|:BN | " Bn ,
The process H := V(P is called arbitrage price (or risk-neutral price) of X.

Proof. If (o, 8),(c’,3") € A replicate X then they have the same terminal
value and, by Proposition 2.17, they have the same value at all preceding
times. Moreover, if (a, 8) € A replicates X, then (a, 3) € Ay N A% and by
Lemma 2.23 we have

X ~
EQ | | = (a,8)
for every EMM @ with numeraire B. O

The pricing formula (2.27) is extremely intuitive: for n = 0 it becomes

X
Hy=E9||;
0 |:BN:|7

then the current price of the option is given by the best estimate (expected
value) of the discounted terminal value. The expectation is computed with
respect to a risk-neutral measure (), i.e. a measure that makes the mean of
the prices of the assets exactly equal to the current observed price, inflated by
the interest rate. This is consistent with what we had seen in the introduction,
Paragraph 1.2.
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Remark 2.26 The following generalization of Theorem 2.25 holds:

in an arbitrage-free market, a derivative X is replicable if and only if
E@ {BL} is independent of the particular EMM @ (with numeraire B).
N

For the proof of this result, based on the separation of convex sets of RV (cf.
Theorem A.177) we refer, for instance, to [282]. ]

2.2.2 Completeness

We know that those who sell a derivative have to deal with the replication
problem. For example, a bank selling a Call option takes a potentially un-
bounded risk of loss: therefore, from the point of view of the bank, it is impor-
tant to determine an investment strategy that, by using the money obtained
by selling the derivative, guarantees the replication at maturity, “hedging”
the risk.

Definition 2.27 A market is complete if every European derivative is repli-
cable.

In a complete market every derivative has a unique arbitrage price, defined by
(2.27): moreover the price coincides with the value of any replicating strategy.

Remark 2.28 On the other hand, there exist derivatives whose underlying
is not quoted and traded, that is the case for instance of a derivative on a
temperature: more precisely, consider a contract that pays a certain amount
of money, say 1 Euro, if at a specified date and place the temperature is below
20 degrees centigrade. Then the payoff function of the contract is

1 if 2
Flay=q TS
0 if z > 20.

In this case it sounds more appropriate to talk about “insurance” instead
of “derivative”. Since the underlying of the contract is a temperature and
not an asset that we can buy or sell in the market, it is not possible to
build a replicating portfolio for the contract, even though we can construct a
probabilistic model for the dynamics of the temperature. Clearly in this case
the market is incomplete. We note that also for derivatives on quoted stocks,
the completeness of the market is not always considered a desirable or realistic
property.

Now we remark that the completeness of a market model implies the
uniqueness of the EMM related to a fixed numeraire. Indeed let us first recall
that, by Theorem 2.19, we may always assume B as numeraire: then if @1, Q2
are EMMs with numeraire B, by (2.27) we have

E@ [X] = EQ2 [X]



2.2 European derivatives 31

for every derivative X. Since by assumption (H.2) we have Fny = F, we may
consider X =14, A € F, to conclude that Q1 = Q-.

As a matter of fact, the uniqueness of the EMM is a property that cha-
racterizes complete markets. Indeed we have the following classical result:

Theorem 2.29 (Second Fundamental Theorem of asset pricing) An
arbitrage-free market (S, B) is complete if and only if there exists a unique
EMM with numeraire B.

2.2.3 Fundamental theorems of asset pricing

We prove the First Fundamental Theorem of asset pricing which establishes
the connection between the absence of arbitrage opportunities and the exi-
stence of an EMM.

Proof (of Theorem 2.15). By Theorem 2.19 it is not restrictive to consider
B as the numeraire. The proof of the fact that, if there exists an EMM then
(S,B) is free from arbitrage opportunities is amazingly simple. Indeed let
Q@ be an EMM and, by contradiction, let us suppose that there exists an
arbitrage portfolio («, 3) € A. Then Vo(a’ﬁ) = 0 and there exists n > 1 such
that P(Vn(a’m >0)=1and P(Vn(a’g) > 0) > 0. Since @ ~ P, we also have
Q(Vrfa’ﬁ) >0)=1and Q(Vn(a”g) > 0) > 0, and consequently E% [‘N/n(a’ﬁ)} > 0.
On the other hand, by (2.17) we obtain

BR [V0)] = Vi =,

and this is a contradiction.

Conversely, we assume that (S, B) is free from arbitrage opportunities and
we prove the existence of an EMM @ with numeraire B. By using the second
part of Proposition A.121 with M = S, it is enough to prove the existence of

Q) ~ P such that
N
3 an (5; - ~;’l_1)] ~0 (2.28)
n=1

for every i = 1,...,d and for every real-valued predictable process a. Formula
(2.28) expresses the fact that the expected gain is null.

Let us fix ¢ for good; the proof of (2.28) is based upon the result of sepa-
ration of convex sets (in finite dimension) of Appendix A.10. So it is useful
to set the problem in the Euclidean space: we denote the cardinality of {2 by

EQ

m and its elements by wi,...,wy,. If Y is a random variable in {2, we put
Y (wj) =Y, and we identify Y with the vector in R™
(Vi Yin).

Therefore we have

EQ[Y] = 3" Y,Q({ws)).
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For every real-valued predictable process «, we use the notation

N

Gla) =Y an (S -5i1)

n=1
First of all we observe that the assumption of absence of arbitrage opportu-
nities translates into the condition

Gla) ¢ RT :={Y e R"\ {0} |Y; >0for j =1,...,m}

for every predictable «. Indeed if there existed a real-valued predictable pro-
cess « such that G(a) € R, then, by using Proposition 2.7 and choosing

Vo = 0, one could construct a strategy in A with null initial value and final
value Vy = G(«) i.e. an arbitrage strategy, violating the assumption.
Consequently
¥ := {G(«) | a predictable}

is a linear subspace of R™ such that
YO =0,
with . defined by
H o={Y eR] |1+ - +Y, =1}
Let us observe that J#" is a compact convex subset of R™: then the conditions

to apply Corollary A.178 are fulfilled and there exists & € R™ such that

i) (£,Y) =0 forevery Y € ¥;
ii) (¢,Y) >0 for every Y € %;

or equivalently

i) > &Gj(a) =0 for every predictable process «;
j=1

m
i) > &Y; >0foreveryY € %
j=1

In particular ii) implies that &; > 0 for every j and so we can normalize the
vector £ to define a probability measure ), equivalent to P, by

Q({w;}) = (Za) 1.

Then i) translates into
E[G(a)] =0

for every predictable «, concluding the proof of (2.28). a
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Next we prove the Second Fundamental Theorem of asset pricing, which
establishes the connection between the completeness of the market and the
uniqueness of the EMM.

Proof (of Theorem 2.29). We just have to prove that if (S, B) is free from
arbitrage opportunities and the EMM @ with numeraire B is unique, then the
market is complete. We proceed by contradiction: we suppose that the market
is not complete and we construct an EMM with numeraire B, different from Q.
We denote the linear space of normalized final values of strategies (o, 3) € A
by

V=V | (. 9) € A}

As in the proof of Theorem 2.15 we identify random variables with elements
of R™. Then the fact that (S, B) is not complete translates into the condition

¥ CR™. (2.29)

We define the scalar product in R™
(X,Y)o = E?[XY] =) X;¥;Q({w;}).
j=1
Then, by (2.29), there exists £ € R™ \ {0} orthogonal to ¥, i.e. such that
(€. X)q =E?[X] =0, (2.30)
for every X = ‘715;1’[3), (a, B) € A. In particular, by choosing® X = 1 we infer

EQ[¢] =0. (2.31)

For a fixed parameter 6 > 1, we put

Qs({w;}) = (1 + 5”§ﬂ|‘|m) QHw;}),  i=1,....m,
where
[€lloo := max [&;].

1<j<m

We prove that, for every § > 1, Qs defines an EMM (obviously different from
Q@ since € # 0). First of all Qs5({w;}) > 0 for every j, since

&; -0

1+ :
61100

3 The constant random variable that is equal to 1 belongs to the space ¥ by
the representation (2.13) for VIS,O"B )it is enough to use Proposition 2.7 choosing
al,...,a?=0and V) =1.
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Moreover we have

ﬁf @t =3 (1+ 55 ) e

Jj=1

- 1
2 Qs + ﬂwm;&@hb—

_
31l
by (2.31). Therefore Qs is a probability measure equivalent to @ (and to P).

Next we prove that S is a Qs-martingale. Using the second part of Propo-
sition A.121 with M = S, it is enough to prove that

=Q(2) + E?lg] =1

N
B > a, (8, -5 )] —0
n=1
for every i = 1,...,d and for every real-valued predictable process «. For fixed

i, we use the notation

=Y e (5 -5).

n=1

Then we have

E% (G i(HéII&II > i(@)Q({w;})

Jj=1
=Z@U(M}5M|Z§ Q{ws})
j=1 > =1
1
=E?[G E9[¢G(a)] =
(Glo)] + g B €G]
(by (2.30))
— E9[G(a)] = O,
by Proposition A.121, since Sisa @-martingale and « is predictable. O

2.2.4 Markov property

Consider a discrete market (.S, B) in the form (2.1)-(2.2). Under the additional
assumption that the random variables p1,...,un are independent, the price
process S has the Markov property: intuitively this property expresses the fact
that the future expected trend of the prices depends only on the “present”
and is independent of the “past”. We recall the following:
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Definition 2.30 A discrete stochastic process X = (X,,) on a filtered proba-
bility space (£2,F, P,(F,)) has the Markov property if

i) X is adapted to (F,);
i) for every bounded $B-measurable function ¢ we have

Elo(Xn) | Fpaa] = Elp(Xn) | Xna],  n2>1 (2.32)

As a consequence of (2.32) and Corollary A.10, for any n there exists a mea-
surable function g, such that

Ep(Xp) | Faor] = gn(Xn-1)-
The proof of the Markov property is based upon Lemma A.108.

Theorem 2.31 If the random variables p1, ..., un are independent then the
stochastic process S has the Markov property.

Proof. We have?*
E [‘P(Sn) | fn—l] =F [W(Sn—l (1 + ﬂn)) | ‘7:71—1] =

(applying Lemma A.108 with X = 1+4p,, Y =S5,-1,G = F,_1and h(X,Y) =
P(XY))

= gn(Sn-1), (2.33)
where
gn(s) = Ep(s(1 + pn))]
and the thesis follows from Remark A.109. m|

2.3 Binomial model

In the binomial model, the market is composed of a non-risky asset B (bond),
corresponding to the investment into a savings account in a bank, and of a
risky asset S (stock), corresponding, for example, to a quoted stock in the
exchange.

For the sake of simplicity, we suppose that the time intervals have the

same length

T
tp —th-1 = N

and the interest rate is constant over the period [0, T, that is r,, = r for every
n. Then the dynamics of the bond is given by

Bn=B,1(1+7), n=1...,N, (2.34)
so that B, = (1 +1r)".

4 By assumption the empty set is the only event with null probability and so
there is only one version of the conditional expectation that we denote by
| fn 1}
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36 2 Discrete market models

For the risky asset we assume that the dynamics is stochastic: in particular
we assume that when passing from time ¢,,_1 to time ¢, the stock can only
increase or decrease its value with constant increase and decrease rates:

Sp = Sp_1(1+ pn), n=1,...,N, (2.35)

where p1,...,pun are independent and identically distributed (i.i.d.) random
variables on a probability space ({2, F, P), whose distribution is a combination
of Dirac’s Deltas:

1+ pin, ~ poy + (1 — p)dg, n=1,...,N. (2.36)

In (2.36) p €]0,1[, v denotes the increase rate of the stock over the period
[tn_1,ts] and d denotes the decrease rate®. We assume that

0<d<u. (2.37)
We point out that we have
P(Sy = uSy_1) = P(1+ p, = u) = p,
P(Sn = dSu-1) = P(1+ jin = d) = (1 - p),
that is

g — uSp_1, with probability p,
" dS,—_1, with probability 1 — p.

Hence a “trajectory” of the stock is a vector such as (for example, in the case
N =4)
(So, uSo, udSy, u>dSy, u>dSp)

or

(So, dSo, d*Sy, ud? Sy, u*d>Sy)
which can be identified with the vectors
(u,d, u,u)
and
(d,d,u,u)

of the occurrences of the random variable (1 + p1,1 4+ po,1 + ps, 1 + ua),
respectively. Therefore we can assume that the sample space 2 is the family

{(e1,...,en) | ex =uor e, =d}

containing 2V elements and F is the g-algebra of all subsets of £2. The family
of trajectories can be represented on a binomial tree as in Figure 2.1 in the
case N = 3.

® The state u (up) corresponds to the increase of the value of the stock, whilst the
state d (down) to its decrease.
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Fig. 2.1. Three-period binomial tree

Remark 2.32 The probability measure P is uniquely determined by (2.36)

and the assumption of independence of the random variables pg, ..., uy. In-
deed we have

P(S, = uld"8y) = (?) P (1—p)"d, j=0,...,n, (2.38)
for n = 1,...,N. Formula (2.38) corresponds to the well-known binomial

distribution which represents the probability of obtaining j successes (j ups)
after n trials (n time steps), when p is the probability of success of the single

trial. The coefficient
( n ) _ n!
i) gl n—j)!

represents the number of trajectories on the binomial tree that reach the price
Sp =uwd"1S,.
For example, in the case n = 2, the probability that Sy is equal to u2Sj is
given by
P(Sy = u?Sp) = P(1+p1 = u) N (1 + po = u)) = p?,
where the last equality follows from the independence of u; and po. Analo-
gously we have

P(ngudSO):P((l—f—,ulZu)ﬂ(l-l-,uz:d))
+P(1+m=d)N(1+ p2 =u)) =2p(1l —p). O
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2.3.1 Martingale measure and arbitrage price

In this section we study existence and uniqueness of the EMM.
Theorem 2.33 In the binomial model, the condition

d<1l+r<u, (2.39)

is equivalent to the existence and uniqueness of the EMM Q. More precisely,
if (2.39) holds then

= 1:%;0[ €10,1], (2.40)
and we have
Ql4+p,=u)=1-Q(1+ u, =d) =q. (2.41)
Moreover the random variables 1, ..., un are Q-independent and we have

Q(S, = ukdn_kSO) = (]?) qk(l — q)"_k, 0<k<n<N. (2.42)

The process S has the Markov property on the space (£2,F,Q, (F,)): for every
function ¢ we have

EQ [@(Sn) | fn—l] = EQ [@(Sn) | Sn—l] = qu(usn—l) + (1 - Q)@(dsn—l)'
(2.43)

Proof. If an EMM @ exists, then by Definition 2.13 we have
S, = E° [En | fn,l] , (2.44)
or equivalently
Sn-1(1+7) = E[Sn1 (14 pin) | Fac1] = Snc1 EC[(1+ pa) | Frea] .-

Since S,—1 > 0, we simplify the previous expression and obtain (cf. Proposi-
tion A.105)

TZEQ[Nn'-,anl] =(u—-1)Q (tn=u—1]F, 1)
A= 1) (1= Q(un = u—1] For)).
Then we have 1+ p
r—
and (2.39) must hold. Moreover, since the conditional probability in (2.45)
is constant, by Proposition A.106 the random variables pi,...,uny are Q-

independent. Consequently (2.41) holds and also (2.42) can be proved as in
Remark 2.32: in particular @ is uniquely determined. The Markov property of
S follows from Theorem 2.31 and the fact that uq,..., un are @Q-independent.
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Note that p1, ..., un are Q-independent even if we do not assume that they are
P-independent. Then formula (2.43) follows from (2.33) since, in the binomial
case, we have

9n(5) = E?[p(s(1 + pn))] = ap(us) + (1 — q)¢(ds).

Conversely, condition (2.39) is equivalent to the fact ¢ in (2.45) belongs
to the interval |0,1[. Then @, defined by (2.42), is a probability measure
equivalent to P and since (2.45) is equivalent to the martingale condition
(2.44), Q is an EMM. O

Condition (2.39) has a clear financial interpretation. Indeed assume that
the parameters u,d,r in (2.34)-(2.36) verify (2.39), i.e. d < 14 r < u: then
the fact of borrowing money from the bank to invest it in the stock gives a
positive probability of getting a profit, greater than leaving the money in the
savings account, since 1 + r < u. This correspond to point iii) of Definition
2.10 of arbitrage. Nevertheless, this investment strategy does not correspond
to an arbitrage portfolio, since there is also exposure to the risk of loss (we
have d < 14 r, so there is a positive probability that the stock is worth less
than the savings account) i.e. property ii) is ruled out. More generally, we
have the following:

Corollary 2.34 The binomial model is arbitrage-free and complete if and
only if condition (2.39) holds. In this case the arbitrage price (Hy,) of a deriva-
tive X is uniquely defined by the following risk-neutral pricing formula:

1

Hy=—
(1+r)N-n

E9[X | Fl, 0<n<N. (2.46)

In particular, if X = F(Sn), we have the following explicit formula for the
initial price of X :

1
(1+r)N

N
— e 2 (3 ) a0 e sy,
k=0

Proof. Combining Theorem 2.33 with the Fundamental Theorems of asset
pricing, we prove that the binomial model is arbitrage-free and complete if
and only if condition (2.39) holds. Formula (2.46) follows from (2.27). Formula
(2.47) follows from (2.46) with n = 0 and (2.42). O

Hy = E9[F(Sy)]

(2.47)

In Remark 2.14, we called P the objective or real-world probability, since
it has to be determined on the basis of observations on the market, while
Q is defined a posteriori. Indeed the EMM has no connection with the “real
world”, but it is useful to prove theoretical results and to get simple and
elegant expressions for the prices of derivatives such as formulas (2.46) and
(2.47).
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2.3.2 Hedging strategies

In the previous section we showed the completeness of the binomial market as
a consequence of the theoretical result of Theorem 2.29: here we aim at giving
a direct and constructive proof of the existence of a replicating strategy for a
derivative X.

First we analyze the case of a path-independent option X that is o(Sy)-
measurable: in this case, by Corollary A.10, there exists a function F' such
that X = F(Sn). If Sy_1 denotes the price of the risky asset at time ty_1,
we have two possible final values

uSn_1,
Sn =
N {dle.
For fixed (a, ) € A, we set
Vn:ansn+ﬂan, n:O,...,N,

and impose the replication condition Vy = X: this is equivalent to

{OéNUSN—1 + BBy = F(uSn-1), (2.48)

andSn-1+ By = F(dSn—-1).

Since it is necessary that both equations are satisfied, we get a linear system
in the unknowns o and by, whose solution is given by

F(’LLSN_l)—F(dSN_l) B . uF(dSN_l)—dF(uSN_l)
uSy_1 —dSn—1 N (1+7r)N(u—d) '

aN —
(2.49)

Formula (2.49) expresses @y and By as functions of Sy_; and shows how to
construct a predictable portfolio in a unique way at time ¢n_1, replicating
the derivative at time ¢ for any trend of the underlying asset. We note that
ay and By do not depend on the value of the parameter p (the objective
probability of growth of the underlying asset). Further, ay has the form of
an incremental ratio (technically called Delta).

We can now write the value of the replicating portfolio (or equivalently the
arbitrage price H of the derivative) at time t_1: indeed by the self-financing
condition we have

Vo1 =anSy-1+BNByn-_1 =
(by (2.49) and the definition of ¢ in (2.40))

1

=1+ (¢F (uSn—-1) + (1 — ¢)F(dSn-1)) - (2.50)

Recalling the Markov property (2.43) and the expression
q=Q(Sy =uSn-1) =1-Q(Sy =dSn-1),
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Fig. 2.2. Hedging of a Call in a one-period binomial model

we have that (2.50) is consistent with the risk-neutral pricing formula (2.46)
that here reads
1
Hy 1 =Vy_1=-——EQ[F(Sy) | Sy_1]. 2.51

N-1 N-1 1+7r [(N)|N1] ( )
By (2.51), Hy_1 is a deterministic function of Sy _; and equals the discounted
conditional expectation F(Sy) given Sy_1.

Let us now consider a simple example to fix the ideas.

Example 2.35 We suppose that the current price of a stock is Sy = 10 and
that over the year the price can rise or fall within 20% of its initial value.
We assume that the risk-free rate is r = 5% and we determine the hedging
strategy for a Call option with maturity 7' = 1 year and strike K = 10. In
this case v = 1.2 and d = 0.8 and the replication condition (2.48) becomes

{12a+ 1053 = 2,

8a + 1558 =0,
hence a = % and § = f%. Then the current value of the hedging portfolio
(corresponding to the arbitrage price of the option) is equal to
25
Vo =10 = —.
0 o+ ﬂ 21
O

Let us go back to the previous argument and repeat it to compute, by a
backward induction, the complete hedging strategy (&, 3,) forn =1,..., N.
More precisely, assume that the arbitrage price H,, = H,(S,,) is known. Then,
since at time t,, we have two cases

Sn _ USTL71,
dSnflu
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by imposing the replication condition V,, = H,,, we obtain the system

anusn—l + ﬂan = Hn(usn—l)a (252)
O‘ndSnfl + ﬁan = Hn(dsnfl)
The solution of (2.52) is
. = Hn(usn—l) - Hn(dsn—l) 2 UHn(dSn—l) - dHn(USn—l)
" Sp—1(u—d) ’ " (I+7r)"(u—d) ’
(2.53)

that is the hedging strategy for the n-th period [t,,—1, ¢,]. By the self-financing
condition we also find the arbitrage price of X at time ¢,_1:

Hn—l = Vn—l = O_énSn_l + Ban—l' (254)
Equivalently we have

o an(usn—l) + (1 - Q)Hn(dsn—l) - 1

H, 1= = E®[H, |S,_1]. (2.55
! 147 1+r [H | Spa]. - (255)

More generally, we have

Hyon = e B2 F(S0) | Snoa)
NEm> <Z> ¢“(1 = @) Pt S ),

k=0
and in particular the current value of the derivative is given by

1
(1+r)N

N
v 2 (3 ) a0 ey
k=0

consistently with formula (2.47).

The previous expressions can be computed explicitly as a function of the
current value of the underlying asset, once F' is given; nevertheless in the
following section we will see that, from a practical point of view, it is easier
to compute the price using a suitable iterative algorithm.

Ho = EQ [F(SN)]

Remark 2.36 As we have already pointed out in Paragraph 1.2, the arbitrage
price of X does not depend on the probability p of growth under the real-world
probability but only on the increase and decrease rates u,d (and also on r). O

Let us consider now the general case and let X be a European derivative
(possibly path-dependent). The final replication condition reads

{OéNUSN1 + OBy = X",

) (2.56)
andSy_1 + fnBn = X¢,
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where X% and X denote the payoffs in case of increase and decrease of the
asset given the information at time ¢y_;, respectively. The solution of the
linear system (2.56) is given by

Xv - xd - uX?—dX"

N a0 dy

an (u — d)SNfl’ (257)

and provides the strategy for the last period that guarantees the final repli-
cation. By the self-financing condition we have that

Hy_1:=Vyx_1=anSn-1+ BnvBn-1

is the arbitrage price of X at time ty_1. A direct computation shows that this
result is consistent with the risk-neutral valuation formula (2.46): precisely,
we have

(qX“ + (1 - q)Xd) = %EQ (X | Fn-1]-

anSn-1+BNBy-1= T+

1+r
Next we use an analogous argument in the generic n-th period. If S,,_1 denotes
the asset price at time ¢,,_1, we have

Sn — us71,—17
dSp_1.

We denote by H* and H¢? the arbitrage prices at time ¢, given the informa-
tion at time ¢,,_1, in case of increase and decrease of the underlying asset,
respectively. Imposing the replication condition V,, = H,,, we obtain the sys-
tem

n Snf an = Hua
QnttSn-1 + [ " (2.58)
andsn—l + 6an = an
with solution
HY — H? - uH? — dH"
Oy = — 22—, , = ————— 1 2.59
Sp—1(u—d) b (I+7r)"(u—d) (2:59)
By the self-financing condition we infer
anl = anl = dnsnfl + Banfl (260)
that is the arbitrage price of X at time ¢,,_1. Equivalently we have
H" + (1 —q)H? 1
g, =t -9l _ EQ[H, | Foil. (2.61)

1+7r 14

Example 2.37 (European Call option) We consider the payoff function
of a European Call option with strike K:

F(Sy) = (Sy — K)T = max{Sy — K,0}.



44 2 Discrete market models

By using formula (2.47) and recalling that ¢ = p;%;d, the initial price Cy of
the option is given by

1 YN +
_ h(1 _ ANN—h ( hiN—hqg
CO_(1+T)N}§(h>q(1 QN (uhdN Sy - K)

-3 (3) (%) (52

h>hg

N
K <N> h N—h
- > "(1—g" ",
(1 + T) h>hg h
where hg is the smallest non-negative integer number greater than or equal to
log —d,\lfso
log 7
Therefore K
Co =S - 2.62
0= SoN(q) (1+T)NN(Q), (2.62)
where qu
q= 2.63
¢ 1+7r ( )
and
Y (N
— h N—h o~
h>ho

We note that NV (q) and N (g) in formula (2.62) can be expressed in terms of
probability of events with respect to suitable probability measures. Indeed,
for 0 < n < N, we have

_K)t
C, = B,E® [% | ]:n}
Sy — K
= B,E° [(NBN) Tisnysry | ]-"n] =1 — I,
where B K
L= E?N Q(Sy > K | F,),
and

S
I]_ = BnEQ |:B—]]\\]{]1{SN>K} | .7:71:|

-1
S S|
s B¢ {ﬁﬂ{sw}(—z) m] .

P e (n) i)

Sy (So\ ! B
(@) n] -
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(by Bayes’ formula and Theorem 2.19 on the change of numeraire, denoting
by @ the EMM with numeraire S)

In conclusion, we obtain the following formula:

~ K
Cn:SnQ(SN >K|fn)_mQ(SN>K|]:n)a
and in particular, with n =0
~ K

Comparing (2.64) to (2.62), we see that the EMM Q with numeraire S is the
equivalent measure to P such that (cf. (2.40) and (2.63))

~ - qu
1 n = = = .
QL+ pn =u)=q Tr

It is easy to verify that 0 < ¢ < 1 if and only if d < 147 < w.

Although formulas (2.64) and (2.62) may be more elegant from a theore-
tical point of view, for the numerical computation of the price of a derivative
in the binomial model, it is often preferable to use a recursive algorithm as
the one that we are going to present in the next section. a

2.3.3 Binomial algorithm

In this section we present an iterative scheme that is easily implementable
to determine the replicating strategy and the price of a path-independent
derivative. We discuss briefly also some particular cases of path-dependent
derivatives.

Path-independent case. In this case the payoff is of the form X = F(Sy).
The arbitrage price H,_; and the strategy (an,3,) depend only on the price
Sp—1 of the underlying asset at time ¢,,_;. Since S,, is of the form

Sy =Sk =u"d" %Sy, n=0,...,N and k=0,...,n, (2.65)

the value of the underlying asset is determined by the “coordinates” n (time)
and k (number of movements of increase). Hence we introduce the following
notation:

3
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for the arbitrage price of X, and analogously
On k= an(Sn—l,k)7 ﬁn,k, = /Bn(Sn—l,k>7

for the related hedging strategy. By the replication condition and the pricing
formula (2.55), we get the following backward iterative formula for the price
(Hn):

Hy = F(Sn k), 0<k<N, (267
1
Hmmk:T:7@HﬁMJ+(L_®HﬂH7 0<k<n-—-1, (2.68)

forn=1,..., N and where ¢ defined in (2.40). Clearly the initial price of the
derivative is equal to Hy .

Once we have determined the values H, i, by (2.53) the corresponding
hedging strategy is given explicitly by

Hn,k:+1 - Hmk
Snfl,k(u — d) ’

UHmk - dHn,k:+1

bk = T a—d)

Qn k= (2.69)

forn=1,...,N and k =0,...,n — 1. We remark explicitly that (o, x, On.k)

is the strategy for the n-th period [tn,_1,t,], that is constructed at time t,_;
in the case Sp_1 = Sn_1k-

Example 2.38 We consider a European Put option with strike K = % and
value of the underlying asset Sy = 1. We set the following values for the
parameters in a three-period binomial model:

1 1
u , 5 T 5
hence we obtain
_1+T—d_2
- u—d 3

First of all we construct in Figure 2.3 the binomial tree where we put the
prices of the underlying asset inside the circles and the payoff of the option at
maturity outside, using notation (2.66), i.e. Hy, j is the value of the derivative
at time ¢, if the underlying asset has grown k times.

Next we use the algorithm (2.67)-(2.68)

1 1 2 1
H, 1= H 1—-q)H =— | =-H —H,
n—1,k 1+ T(q nk+1 + ( Q) n,k) 1+ % (3 nk+1 T 3 n,k)

and we compute the arbitrage prices of the option, putting them outside the
circles in Figure 2.4.

Eventually, using formulas (2.69), we complete the figure with the hedging
strategy for the derivative in Figure 2.5. O
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Fig. 2.3. Three-period binomial tree for a Put option with strike K = g and So =1,

with parameters u =2 and d =71 = %

Fig. 2.4. Arbitrage prices of a Put option with strike K = g and So = 1in a
three-period binomial model with parameters u =2 and d =r = %
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_ _5 — 92
21 = —57, P21 = 353

_ 67 _ 364
1,0 = — 943> 51,0 = 729

Fig. 2.5. Hedging strategy for a Put option with strike K = % and So = 11in a

three-period binomial model with parameters u =2 and d = = 2

Path-dependent case. We examine some well-known path-dependent deriva-
tives: Asian, look-back and barrier options. The iterative scheme (2.67)-(2.68)
is based upon the fact that the price H, of the derivative has the Markov
property: so it is a function of the prices at time ¢,, and it does not depend on
the previous prices. In particular the scheme (2.67)-(2.68) requires that at the
n-th step n+ 1 equations must be solved in order to determine (H,, x)k=0, . n-
Therefore the computational complexity grows linearly with the number of
steps of the discretization.

On the contrary, we have already pointed out that, in the path-dependent
case, H, depends on the path of the underlying asset (Sp,...,S,) until time
t,. Since there are 2" possible paths, the number of the equations to solve
grows exponentially with the number of the steps of the discretization. For
example, if we choose N = 100, we should solve 2'%0 equations just to compute
the price at maturity and this is unfeasible.

Sometimes, by adding a state variable that incorporates the information
from the past (the path-dependent variable), it is possible to make the price
process Markovian: this simple idea is sometimes used also in the continuous
case. We consider the following payoff:

(Sy — An)T  Call option with variable strike,

2.70
(Ay — K)T  Call option with fixed strike K, (2.70)

F(Sn,An) = {
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where A denotes the path-dependent variable: more precisely, forn =0,..., N,
n
%_H k:zo Sk (Asian option with arithmetic average)
n n41
S Asian option with geometric average
min Sy (Look-back option with variable strike)
0<k<n
max Sk (Look-back option with fixed strike).
0<k<n

When passing from time ¢,,_; to time ¢,,, we have S,, = uS,_1 or S, = dS,_1
and consequently A,, takes the values A% or A% where

nAn,_1+uSn_1
n+1

(An-1)"uSy 1) ™7
min{A,_1,uS,—1}
max{A,_1,uSn_1}

Asian option with arithmetic average)

o Asian option with geometric average)
" Look-back option with variable strike)
Look-back option with fixed strike)

(2.72)
and A? is defined analogously. The following result can be proved as Theo-
rem 2.31.

—~ o~~~

Lemma 2.39 The stochastic process (S, A) has the Markov property, and for
every function f we have that
E9 [0(Snt1, Anyr) | Ful = E@ [0(Snt1, Ant1) | (Sn, An)]
= qp(uSn, A7) + (1 — q)p(dSn, A7)
We set Sy, i as in (2.65) and denote by A, 1(j) the possible values of the path-

dependent variable corresponding to Sy, x, for 0 < j < J(n,k) and suitable
J(n,k) € N.

Example 2.40 Under the assumption ud = 1, we have

Snk:

)

d"2kS, if n > 2k,
u2k—nS, if n < 2k.

In the case of a Look-back option with fixed strike, if n > 2k then S, 1, < S
and ‘
Ani(j) =uFS,  j=0,....,n—k,

while, if n < 2k, then S, , > Sp and
Ap ik (j) = uF7S,, j=0,...,k

Just to fix the ideas, it can be useful to construct a binomial tree with N = 4
and verify the previous formulas.
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Also in the case of a Call option with strike K and barrier B > K, we can
use the previous processes: here the payoff is given by

F(Sn,An) = (Sn — K) 1, <By-

O
In general we put
Hy, 1 (j) = Hn(Snk: An i (4))- (2.73)
By the previous lemma, since
1 pe
H, = mE [Hn+1 | -7:71,]

we can price a path-dependent derivative using the following iterative scheme:
Hy k() = F(Snk, ANk (5)),
for0< k<N, 0<j<J(N,k), and

1 .
:m (an (usnfl,ka AZA,I@(J))

+ (]_ — C])Hn (dSnfl,kv Azfl,k(j)) )’

anl,k(j)

for0<k<n-1,0<j<Jn-1k),and n =1,...,N. Eventually the
hedging strategy is given by

H71,,k+1(j) - Hn,k(j)
('LL - d)Snfl’k ’
uHy, 1, (§) — dHp k41 (5)

ﬂn,k(j) = (U7d)(1+7‘)n )

an k(j) =
(2.74)

forn=1,...,N, k=0,...,n—1and j = 0,...,J(n, k). Note that, for a

n

Look-back option with fixed strike, J(n,k) < 4 and so the computational

complexity at the n-th step is of order n?.

2.3.4 Calibration

The calibration of a model consists in determining the parameters by the ob-
servation of the current-world market. The parameters in the binomial model
are the risk-free rate r over the period [t,—1,t,], the increase and decrease
factors u, d of the underlying asset and the objective probability p. However,
we have already noticed (cf. Remark 2.36) that the arbitrage price of a deriva-
tive does not depend on p: therefore only r,u,d have to be determined. We
point out that the parameters depend on N since obviously the increase and
decrease rates depend on the amplitude of the time period % nevertheless
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in this section N is fixed and so we do not show this dependence explicitly.
In the following procedure the hypothesis of P-independence of the random
variables ui,...,un plays a crucial role.

If we suppose that the annual interest rate 7 is known, then we can obtain
r easily by the relation

zl3

l4+r=en. (2.75)

Next we define the annual rate of return p of the risky asset by putting

ST = Soell’T, (276)
or equivalently
St
T =log —.

It is clear that p is a random variable that plays an analogous role to the
interest rate in the compounding formula. By (2.35) we have

g N
log S_T = Z log(1 + pn),
0 n=1

and since the random variables p, are identically distributed by (2.36), we
get the following formula that defines the average rate of return m:

mT := E[uT] = NE [log(1 + p1)] = N (plogu + (1 —p)logd).  (2.77)
Analogously the wolatility o is defined by the following equality:
2 St -
o°T = var (1og S_0> = var <nzl log(1 + ,un)> =
(by the independence of the random variables ;)
= Nvar (log(1 + 1)) =

(in virtue of Exercise A.36)

= Np(1 —p) (log %)2 . (2.78)

In other words, the average rate of return and the volatility are the expec-
tation and the standard deviation of the annual rate of return, respectively.
The volatility represents one of the most common and known estimators of
the riskiness of the underlying asset. In principle the values of m and o can be
considered approximately observable in the current-world market. For exam-
ple, one can easily get some estimates of the values of m and o starting from
a given set of historical values of S. We therefore suppose that m and o are
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known and we try to draw from them the value of u and d. By equations
(2.77)-(2.78) and putting § = %, we obtain the system

md = (plogu + (1 —p)logd),
026 =p(1 —p) (log %)2.

Thus we have a non-linear system of two equations in the three unknowns wu, d

and p: in order to find a solution, we impose another condition a priori. The

most common choices in the literature are the following ones: p = % or

(2.79)

ud = 1. (2.80)
Imposing p = 3, system (2.79) becomes
{ud = e20m,
u 620\/37
and its solution is given by
u = eoVotms, d=e oVotmd, (2.81)
Imposing condition (2.80), we have® d < 1 < u and system (2.79) becomes

{2p: 1+ lgééuv

025 = 4p(p — 1) (logu)®,

and its solution is given by

o o

= oVOVIH(R) g oV 1e(R) (2.82)
In both cases (2.81) and (2.82), we obtain”

U = eo’\/g+0(\/g) — 1 + 0-\/S+ 0(\/3),
d=e VoV — 1 _ 5\/5 + o(V0),

for § — 0: in other terms, “—\;31 and 1;\/; approximate the value ¢ of the volati-

lity or riskiness of the asset. For the sake of simplicity, in order to implement
the binomial algorithm it is very common to choose

Vi g= eV, (2.83)

6 We note that, if condition (2.80) holds, then
undnSO = So
therefore the price “moves around” its starting value.
" We recall that the function f is a “little-0” of the function g as  — zo (in symbols
f(z) =o(g(z)) as ¢ — xo) if there exists a function w such that f = gw and

lim w(z) = 0.

r—x0
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Remark 2.41 Assuming (2.83) and recalling that § = %, for the maximum
and minimum values of the final price of the underlying asset, we have

ngmaX) — UNSO _ ea\/NTSO — +00,

SU™ = aN sy = e VNS, —— 0,
N—o0
and so, when N increases, the interval of the final values of S gets larger and
“covers” the whole Ry as z — xg.
The no-arbitrage condition d < 1+ r < u becomes

e~V < ¢ < ooVO

or equivalently

—oV/N < T < oV/N.

Therefore if we choose arbitrary values 7 and o > 0, for the the annual risk-
free rate and the volatility respectively, then the no-arbitrage condition is
fulfilled provided that N is large enough: in that case, by (2.83) the EMM is
defined by

1+r—d e _ e—oVs 1 1 /. o2
L _eg\/s_em/s§+%<r_7>ﬁ+°(\[5)

as 6 — 0. ]

Example 2.42 We set the parameters of the market as follows: annual in-
terest rate # = 5% and volatility o = 30%. We consider a 10-period binomial
model for an option with maturity in 6 months: N = 10 and T = % By (2.75)
we have

r=em'z 0 —1 ~ 0.0025,

Analogously, by (2.83), we have

30 1
0!

~ el00'Vv20 &~ 1.0693. O

N

2.3.5 Binomial model and Black-Scholes formula

We have seen that the binomial model, with a fixed number of periods N,
allows us to determine the initial arbitrage price H(()N) of a given derivative
X. We may wonder if the binomial model is stable, this meaning that, if we
increase the number of steps, the price HO(N) actually converges to some value,
so that the situation in which the value diverges or oscillates around more than

one value is avoided®.

8 The divergence or the oscillation around some values would cast doubts on the
consistency of the model.
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Fig. 2.6. Convergence of the price of a European and an American option in the
binomial model to the corresponding Black-Scholes price when N tends to infinity

In this section we prove that the binomial model is stable and approximates
the classical Black-Scholes model in a suitable way, when IV tends to infinity.
In what follows, the number of periods NV € N is variable so it is important
to express the dependence on N of the parameters of the model explicitly:
therefore we denote the interest rate, the increase and decrease factors by
rN,un,dy respectively, the random variables in (2.35) for k = 1,..., N by

u,(CN) and the martingale probability by ¢y, @n. Let T > 0 be fixed: we put

T
61\7 = Nv
so, by (2.75), we have
L+7ry =€y, (2.84)

where we denote by r the annual risk-free rate. Further, we assume that wuy
and dpy take the following form:

uy = eam-‘rwﬂv’ dy = e—U\/E-i-ﬁt;N’ (2.85)

where «, § are real constants. Such a choice is in line with what we saw in the
previous section: indeed by imposing one of the conditions p = % or ud =1
for the calibration, we obtain parameters of the form (2.85). Furthermore, the
simplest choice (2.83) corresponds to o = 3 = 0.

First of all we observe that the asymptotic behaviour of the EMM is in-

dependent of a, 3. Indeed we have the following:
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Lemma 2.43 If (2.84)-(2.85) hold, we have

1
lim gy = . (2.86)

N—o00 2

Proof. By definition

87’51\1 _ e~ OVINTPIN
N = eoVOIN+adn _ o—oV/Sn+BON

(2.87)

Then, using a Taylor expansion for the exponentials in the expression (2.87)
of gn, we get

26’I‘5N _ 60’\/6N+OC§N _ 670\/5N+6§N

2N — L = T e ratn — oovanthon
(T o M) 5x + 0 (8n) (2.88)
T ooy 0 ehT®
hence the claim. a

Now we consider a European Put option with strike K and maturity T": by
formula (2.47), the initial price PéN) of the option in the N-period binomial

model is given by
+
<K—S (1+uk ))) ]
=1 (2.89)

— e TE (K - SOeXN)Jr}

PNV = e TR

where we put

N
Xy = log H (14+mg™) =3 v™, (2.90)
k=1 k=1
and
Y(N) = log <1+u(N)), k=1,...,N,

are i.i.d. random variables®. Further, we have
Qn (Yk(N) =0\ 0N + CY5N) = qn,
Qn (Y;@-(N) = —0\/Nn +55N) =1—-gn.

We rewrite (2.89) in the form

(2.91)

N
P = B9V [p(Xx)),
® By Theorem 2.33, the random variables NSCN)
EMM.

are independent also under the
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where

o(r) = e " (K — Spe™) T (2.92)

is a continuous bounded function on R, ¢ € Cy(R). The following result
provides asymptotic values for the mean and the variance of Xy in (2.90).

Lemma 2.44 We have:

2

H QN — _9
1\}51100 E%Y [Xy] (r 5 > T, (2.93)
A}im var®y (Xy) = o?T. (2.94)

Before proving the lemma, let us dwell on some remarks. By the central limit
theorem'®, X converges in distribution to a normally distributed random
variable X and so, by (2.93)-(2.94), we have

X NN(rfé)T,ﬁT' (2.95)
Since the function ¢ is bounded and continuous, we infer'! that
Jim P = Jim B9V [p(Xx)] = Ep(X)]. (2.96)

Since X has a normal distribution, the expectation E [¢(X)] can be com-
puted explicitly and, as we will see, corresponds to the classical Black-Scholes
formula.

Proof (of Lemma 2.44). In order to prove (2.93), we compute

EOV [Y1(N)] =qN (Um + 045N) +(1—-qn) (—U\/a + ﬁ(SN)
= (2qn — 1) o\/dn + On (agn + B (1 — qn)) =
(by (2.88) and (2.86))

2 (7
(r-%-#)ontoln)  ravp
a 1+o0(1) toN +of ))
0.2
= (7"—2> 5N+O(5N), as N — oo. (2,97)
Then we have, recalling that oy = %,
(V) o?
EON [Xy] = NEO~ [Yl } = (r— 7)T+o(1), as N — oo,

hence (2.93).

10 See Lemma 2.45 for a rigorous proof of this statement.

' By (A.128): this is the reason why we considered a Put option instead of a Call.
The Put-Call parity formula (cf. Corollary 1.1) allows us to obtain the price of a
Call option: the reader can see also Remark 2.49.
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Now we prove (2.94) by using the identity
var@ (Xy) = Nvar@ (Y) = N (EQN (V2] — B9~ [Y]2> (2.98)

where we put Y = Yl(N). By (A.30) in Exercise A.36, we have
E9~ [V?] = (loguy + logdy) E®Y [Y] — loguy log dy
= dn(a+ B)E [Y] — (a\/aN + aaN) (—m/éN + 66N)

=02y +0(0n), as N — oo,
(2.99)

and so the claim follows immediately substituting the last expression into
(2.98), bearing in mind also that

ECV Y] =0 (8n), as N — oo. O

Lemma 2.45 The sequence of random variables (Xy) defined in (2.90) con-
verges in distribution to a random variable X that is normally distributed as
in (2.95).

Proof. This result is a variation of the central limit Theorem A.146: by Lévy’s
Theorem A.141, it is enough to verify that the sequence (px, ) of the corre-
sponding characteristic functions converges pointwise. We have:

pxy(n) = B9V [eM¥N] =

(since the random variables Yk(N) are i.i.d. and putting ¥ = YI(N))

- (v [ -

(by Lemma A.142; applying formula (A.129) with £ = nv/dx and p = 2)
9 N
= (1 +inE9N [Y] — %EQN V2] +o0 (5N)> for N - o0o.  (2.100)

Now we recall formulas (2.97) and (2.99):

2

EQN [Y] = (T— %) 6N+o((5N), EQN [Y2] 2025N+0(5N);

as N — oo. Substituting those formulas into (2.100), we get

2 2 N
wa(n)=(H%(—MT(T—%)—nQ% +o(1)>) as N — oo,
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hence
2 2T
i oxy (n) = exp (—inT (r - %) - n2%> ,  VneR

Then, by Lévy’s theorem, we have Xy %, X where X is a random variable
whose characteristic function is

. o2 o2T
©x(n) = exp (mT (r - 2) - 7722) 7

and so, by Theorem A.89, X has normal distribution and (2.95)-(2.96) hold.

In conclusion, gathering the results of the previous lemmas, we have proved
the following:

Theorem 2.46 Let P(EN) be the price of a Furopean Put option with strike

K and maturity T in an N-period binomial model with parameters

unN = 60 6N+O‘5N, dN = 6_0- 5N+56N, 1 +ry = €r6N,

where o, 3 are real constants. Then the limit

lim PN = p
N 0 0

oo

exists and we have

Py=e¢TE [(K - SOeX)T (2.101)
where X is a random variable with normal distribution
X NN(T—"Q—Z)T,zﬂT' (2.102)

Definition 2.47 Py is called Black-Scholes price of a European Put option
with strike K and maturity T.

One of the reasons why the Black-Scholes model is renowned is the fact that
the prices of European Call and Put options possess a closed-form expression.

Corollary 2.48 (Black-Scholes formula) The following Black-Scholes for-

mula holds:
Py = Ke "'®(—dy) — So®(—dy), (2.103)
where @ is the standard normal distribution function
1 v y?
P(x) = — e 2 dy, r €R, 2.104
@=—=[ Fa (2104
and

log(%) + (r—i— %Z)T

di = T )
log (%) + (r— %Q)T
U\/T )

WWW.FOREX-WAREZ.COM

ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRY

(2.105)

d2:d1—0' T =



Андрей
forex-warez.com
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Proof. By (2.101), we have to prove that

e TE [(K - soex)ﬂ = Ke " Td(—dy) — So®(—d,),

where X is normally distributed as in (2.102). Now, (cf. Remark A.32)

0.2
X = (r—2>T+aﬁZ

with Z ~ N 1, and a simple computation shows that
S = SpeX < K — Z < —ds.

Then we have

E((K - 50e¥)"| = KE [Lis;<iy] = B [Srls,<i] = I + B,

and, by (2.107),
I = KE[Lzc_ay)] = K&(—dy).

On the other hand, we have
(72
I =e"TSE [G_TT+GﬁZ]1{Z<—d2}}
—ds 1
— e
oo V2T

(by the change of variable y = = — o/T)

_ao3r _ a2
_ erTSO 5 +rr\/Tm 5 diC _

2

7d270’\/T e—y—
= BTTSO/ ﬁdyv

and this concludes the proof of (2.106).

59

(2.106)

(2.107)

|

Remark 2.49 (Black-Scholes formula) By the Put-Call parity formula,
we have that the Black-Scholes price Cy of a European Call option with strike

K and maturity T is given by

Co=PFPy+ 5y — Ke T,

Using (A.26), a simple computation shows that the following Black-Scholes

formula holds:
Co = So®(dy) — Ke "' d(dy),

(2.108)

where dy,dy are defined in (2.105) and @ is the standard normal distribution

function.

O
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2.3.6 Black-Scholes differential equation

In this section we continue the study of the consistency of the binomial model
with the Black-Scholes model. We saw that, as IV tends to infinity, the bino-
mial price tends to the Black-Scholes price: we prove now that it is possible
to interpret the iterative scheme (2.67)-(2.68) of the binomial model as a
discrete version of the Cauchy problem for a parabolic differential equation,
called Black-Scholes equation. By means of stochastic calculus techniques, in
Chapter 7 we will present the Black-Scholes theory which gives the price of a
derivative directly in terms of the solution of the Black-Scholes equation.

In the rest of the section we adopt the usual notation § = % and assume
that the parameters u, d, 7y of the binomial model with N periods (cf. (2.83))
are of the form:

2
u:e”‘/g:1+a\/g+%5+o(5),

2
d=eP = 1-0V5+Z5+0() (2.109)

l+ry =€ =1+7r5+0(0),

as 6 — 0. Here o and r denote the volatility and annual interest rate, respec-
tively. In this case we have

Cl4ry—d 11 o2
¢=—— —2+20<7’ 2>\/5+o(\/5) (2.110)

as 6 — 0.

Given a function f = f(t,S) defined over [0,7] x Rsq (here f plays the
role of the arbitrage price of a derivative with underlying asset S), we recall
the pricing formula (2.68) that, using the notation above, takes the following
form:

f(t,9) = (gft+6,uS)+ (1 —q)f(t+6,d9)). (2.111)

1+ry
If we put

f=rtS), fr=ft+6uS),  fi=f(t+6dS),
and if we define the discrete operator
Jsf(t,8) = =(L+rn)f +af*+ (1 —q)f? (2.112)

(2.111) is equivalent to

Jsf(t,S)=0.
Proposition 2.50 For every f € C12([0,T] x Rs) we have
t
lim 7J5f( 75) = LBsf(t, S),

6—0t )
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for every (t,5) €]0, T[xRxo, where

0_2 S2

Lpsf(t,S):=0:f(t,S) + 5

Ossf(t,S) +rSosf(t,S)—rf(t,S) (2.113)

is called Black-Scholes differential operator.

Proof. Taking a second-order Taylor expansion of f we get!?

JU=f=0f0+0sfS(u—1)+ %855]“52(@& —1)? +0(8) + o((u—1)?) =

(by (2.109), substituting the expression for u in terms of § and ordering the
expression according to the increasing powers of \/5)

= 080sfV6+ Lf6+0(8), &6—0, (2.114)
where ) 5o
Lf =0+ TSosf+ T dssf,
and analogously
f'—f=-080sfVi+Lfs+o(5), &—0. (2.115)

Then we have

Jsf(t,8) = —(L+rn)f+af*+ (1 —q)f?
= —=0rf+q(f* = F= (" =)+ (=) +0(5) =
(substituting the expressions (2.114) and (2.115))
= —rf +O6Lf +V5(2¢ — 1)aSdsf + o(8) =
(by (2.110))

= —orf+0Lf + V5 ((r— ";) \/S+o(¢3)> 7S0s f + o(6)
= 6Lpsf +o(6),
as  — 0 and this concludes the proof. O
By the previous proposition, the differential equation
Lesf(t,8) =0,  (t,5) €]0,T[xRsq, (2.116)

is the asymptotic version of the pricing formula (2.68). Further, (2.67) corre-
sponds to the final condition

f(T,S)=F(S), S ¢€Rs,. (2.117)

2 Tn the rest of the proof we always drop the argument (¢, S) of the functions.
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The pair of equations (2.116)-(2.117) constitutes a Cauchy problem that, as
we have already said, we will analyze again in Chapter 7 using the tools of
stochastic calculus in continuous time.

Problem (2.116)-(2.117) is a backward problem with final datum such as
the one examined in Appendix A.3.5. With the change of variables

f(t,8) =u(T —t,logS)

i.e. putting 7 =T — ¢ and = = log S, problem (2.116)-(2.117) is the backward
version of the following parabolic Cauchy problem with constant coefficients
(cf. Appendix A.3):

%zamu—&- (r— "72> Ozu — ru — Oru =0, (r,z) €]0, T[XR,
u(0,x) = F(e*), z e R

By Theorem A.72, if the payoff © — F(e®) is a function that does not grow too
rapidly, we can express the solution u in terms of the Gaussian fundamental
solution I" of the differential equation:

u(r,x) = /RF(T,],‘ —y)F(e¥)dy, 7€]0,T[, z € R,

where I' is given explicitly by (A.61).

The previous formula can be interpreted in terms of the expectation of the
payoff that is a function of a random variable with normal distribution and
density I'. By using the expression for I', with a direct computation we can
obtain again the Black-Scholes formulas (2.103) and (2.108) for the price of
European Put and Call options.

A posteriori, the binomial algorithm can be considered as a numerical
scheme for the solution of a parabolic Cauchy problem. As a matter of fact,
Proposition 2.50 implicitly includes the fact that the binomial algorithm is
equivalent to an explicit finite-difference scheme that will be analyzed further
in Chapter 12. In their recent paper [188], Jiang and Dai extend the results
for the binomial model approximating the continuous Black-Scholes case to
European and American path-dependent derivatives, and they prove that the
binomial model is equivalent to a finite-difference scheme for the Black-Scholes
equation.

2.4 Trinomial model

In the trinomial model, the market is composed of a non-risky asset B whose
dynamics is given by (2.1) with r, = r, and one or two risky assets whose
dynamics is driven by a stochastic process (hp)n=1,...ny With hy,..., Ay 1.i.d.
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random variables such that

1 with probability pq,
hn, = ¢ 2 with probability ps,
3 with probability ps =1 — p1 — po,

where p1,ps > 0 and p; + p2 < 1. The trinomial model with only one risky
asset S is called standard trinomial model, while in case there are two risky
assets S, 52, it is called completed trinomial market.

In general we assume that S}, S2 > 0 and

SL =8 (14 pi(hy)), n=1,...,N, i=1,2, (2.118)
where
L+p'(h) =< m; ifh=2,
d; if h =3,

and 0 < d; < m; < u;. In Figure 2.7 a two-period binomial tree is represented.

In the standard trinomial model S' typically represents the underlying
asset of a derivative: the standard trinomial model is the simplest example
of incomplete model. On the contrary, the completed trinomial model is a
complete model that is typically used to price and hedge exotic options: we
may think of S' and S? as an asset and a plain vanilla option on S! that is
supposed to be quoted on the market, respectively. Then the hedging strategy
of an exotic option on S is constructed by using both S and S2.

We first examine the standard trinomial model and we set S = S! for
convenience. In order to study the existence of an EMM @, we proceed as in
the binomial case by imposing the martingale condition (2.44): in this setting

it reads
1

1 +r
where p(h) = p!(h). Then, putting

Sho1 EC[S,_1 (14 pu(hn)) | Fni], (2.119)

@ =Q(hn =3 | Fno1), j=1,2,3, n=1,...,N, (2.120)

we obtain the following system

{uq? +mgy +dgy =1+, (2.121)

qr + g5 + g5 =1,

that does not admit a unique solution ¢1, gz, g3. Therefore the EMM is not
unique and consequently, by Theorem 2.29, the market is incomplete. Note

also that the random variables h,, are not necessarily independent under a
generic EMM.
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Fig. 2.7. Two-period trinomial tree

The incompleteness of the market can also be deduced more directly by
examining the construction of a replicating strategy. For the sake of simplicity,
we consider the one-period case N = 1 and we let S} =1 and r = 0. Given a
derivative X = F(S7), the replication condition V; = X becomes

181 + B = F(51),

that is equivalent to the following linear system in the unknowns aq, 5y:
aru+ B = F(u)
aym+ 1 = F(m) (2.122)
ard+ [ = F(d)

It is interesting to note that the matrix associated to system (2.122)

u 1
m 1

d 1

is the transpose of the matrix associated to system (2.121): this points to the
duality relation between the problem of completeness and absence of arbitrage
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opportunities. In the binomial model an analogous part is played by the matrix

(i)

that is a square matrix with maximum rank, so guaranteeing completeness.
It is well known from linear algebra that system (2.122) admits a solution
if and only if the complete matrix

u 1 F(u)
m 1 F(m)
d 1 F(d)

does not have maximum rank. Imposing, for example, that the second row is
a linear combination (with coefficients A, u) of the first and of the third rows,
we obtain

m = \u+ ud

1=A+u

F(m) = AF(u) + pF(d),
hence

u—m N d

F=w—a Cu—d’

and we can eventually write the condition a derivative must verify in order to

be replicated: J
m— u—m
F(m) = ———F(u) + —
Condition (2.123) is tantamount to saying that the second equation of the
system (2.122) is superfluous and can be dropped. In that case the system
can be solved and we see that it is equivalent to the analogous system in the
binomial model, whose solution is given by (2.49): in this particular case we

get

F(d). (2.123)

F(u) — F(d) uF(d) — dF(u)
a1 = w—d 5 ﬁl = w—d . (2124)
By the self-financing condition, the arbitrage price of the derivative is defined
by
Hy = a150 + 51Bo

and it does not depend on the fixed EMM. The derivatives that do not satisfy
condition (2.123) cannot be replicated and this substantiates the fact that the
standard trinomial market is incomplete.

Next we consider the completed trinomial model: imposing the martingale
condition (2.119) with S = S% and u = p’ for i = 1,2, and setting q =
Qhy, =37 Fn-1),j=1,2,3, we obtain the linear system

uigy +migy +digy =1+,
ugql +maqy +dagy =1+, (2.125)
at +a43 + g5 =1,



66 2 Discrete market models

which has a solution ¢7 = ¢;, j = 1,2, 3, independent on n. Under suitable
conditions on the parameters of the model, we have that ¢; €]0,1[ and there-
fore the EMM (@ is uniquely determined. In this case the completed trinomial
model is arbitrage-free and complete. Furthermore, since ¢} are constants in-
dependent on n and w € 2, we conclude that the random variables h,, are i.i.d.
under the probability Q. As a consequence, S' and S? are Markov processes
on (£2,F,Q,(F,)) by Theorem 2.31.

On the other hand, the replication strategy of a derivative X with arbitrage
price H can be determined as in the binomial case: to construct the hedging
strategy (al,a?,3,) for the n-th period [t,_1,t,] given F,_1, we solve the
linear system

apu1Sy_y +agugSy_y + B (1+7r)" = Hy,
almiSt | +aimaeS2 |+ B.(1+7r)" =HM, (2.126)
ald; S | +a2dyS? |+ B, (1+7)" = H,‘f,

where H*, H™ and H¢ denote the arbitrage prices of the derivative at time
t, in the three possible scenarios. The solution to system (2.126) is

y _ do (H' — HY) + Hjymg — Hi'ug + Hyj (—mo + ua)
"SE (da (ma —ur) + mauy — myug + dy (ug — my))
o2 — di (H™ — HY) + HYmy — H™uy + HE (ug — my)
" Shy (mmaun + da (ur — ma) +di (M2 — u2) + maua)’
do (H'my — H™uy) + di (—H%my + H™uz) + HE (mauy — myus)
(1 +7)" (dg (my — uy) + mouy — myug + di (—ma + uz))

«

b

6n:

2.4.1 Pricing and hedging in an incomplete market

In this section we briefly discuss the pricing and hedging problems in incom-
plete markets. We first recall the following definition given in Section 2.2.1.

Definition 2.51 In an arbitrage-free market (S, B), let Q be an EMM with
numeraire B. The risk-neutral price relative to Q of a (not necessarily repli-
cable) derivative X is defined by

HE® = E9[D(n, N)X | ], 0<n<N, (2.127)
where D(n, N) = g—; is the discount factor.

By Lemma 2.23, the pricing formula (2.127) does not introduce arbitrage
opportunities in the sense that the augmented market (S,B,H®) is still
arbitrage-free. Further, in the case X is replicable, by Theorem 2.25 the price
H® does not depend on the fixed EMM and is equal to the arbitrage price.
Given a self-financing predictable strategy (a, 8) € A, the quantity

X -vi?
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represents the replication error, also called Profit and Loss (P&L), at maturity
of the strategy. Now, if ) denotes the selected EMM and V is the discounted
value process, we may consider the expected (discounted and squared) P&L

2
R®(a,B) := E° <BX - f/}v‘*’ﬁ)) ] (2.128)

N

as a measure of the hedging risk under the EMM Q.
We now remark that any strategy that minimizes the risk R® requires an

initial investment equal to the risk-neutral price E9 [ ] Indeed, using the

fact that V(@ is a @Q-martingale and the identity
EY? =EY?+E [(Y - E(Y))ﬂ :

with ¥ = = V(O"B) we may rewrite (2.128) as follows:

R%,m:(EQ 5] g

N

X Q| X SB) e
(5e 72 |5y ) - (72 7))

Now, recalling that the gain V( o) ‘70(0"@ does not depend on ‘7()(“”&) (cf.
formula (2.13) and Prop051t10n 2.7), we conclude that in order to minimize
the risk R? it is necessary to put

+E9

~(a X

This motivates Definition 2.51 even if it poses some questions on the very foun-
dations of the classical theory of arbitrage pricing. In particular this theory
has two cornerstones:

i) the uniqueness of the price of the derivative: the arbitrage price should be
objective, dependent only on the quoted prices of the underlying assets
and not on the subjective estimate of the probability P;

ii) the hedging procedure, i.e. the neutralization of the risk that we take on
the derivative by the investment in a replicating strategy.

The risk-neutral price in Definition 2.51 is not unique since it depends on the
choice of the EMM. Furthermore, in an incomplete market, a derivative is not
generally replicable and so it is necessary to study possible hedging strategies



68 2 Discrete market models

that limit the risks (super-hedging, risk minimization within the set of EMMs,
etc.). Such a choice can be made by following the preferences of the traders or
on the grounds of some objective criterion (calibration to market data). The
study of these problems goes beyond the scope of this book and is treated
thoroughly in monographs such as [134] by Follmer and Schied, to which we
refer the interested reader.

Here we confine ourselves to the following example that shows how the
hedging problem can be tackled in the standard (hence, incomplete) tri-
nomial model. The approach is based on a classical optimization technique
called Dynamic Programming. The main idea is to find a strategy minimizing
the expected replication error of the payoff under the real-world probability
measure+P.

Example 2.52 We consider a two-period standard trinomial market model
where the dynamics of the risky asset is given by

So =1, Sy = n—1(1+,un)7 n=12

and p,, n = 1,2, are i.i.d. random variables defined on a probability space
(£2,F, P) and such that

with probability p; =

1
2

14+ p, =41 with probability ps =
2 with probability ps =

Wl W Wl

We assume that the short rate is null, » = 0.
We consider the problem of pricing and hedging a European Call option
with payoff

F(S) = (S —1)*,

by minimization of the “shortfall” risk criterion. More precisely, by means
of the Dynamic Programming (DP) algorithm, we aim at determining a self-
financing strategy with non-negative value V' (that is, such that V,, > 0 for
any n) that minimizes

EY U(Va, S,)],

where

UV, s) = (F(S) - V)"

is the shortfall risk function.
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Payoff

Fig. 2.8. Two-period trinomial tree: price of the underlying and payoff of a Euro-
pean Call with strike 1

We first represent the binomial tree with the prices of the underlying asset.
By (2.8), the value V of a self-financing strategy («, 3) satisfies

OénSnfla
Vi=Va1+ anSn—lﬂln =V + 0, (2130)
_ anSn—1
Then V,, > 0 for any n if and only if V) > 0 and
_ 2V, _
S . V”H n=1,2.
n—1 n—1

In the general framework of a model with NV periods, the DP algorithm consists
of two steps:

i) we compute

RNfl (V, S) = mi

i EP UV + Sapn, S (1+ pn))]

2v
S

u< B

)

for S varying among the possible values of Sy_1. Recalling that we are
considering predictable strategies, we denote by anx = ay(V) the mini-
mum point for V' varying among the possible values of Vy_1;
ii) forne {N —1,N—2,...,1}, we compute
R,1(V,S):= min  EP[R,(V + Sap,,S 1+ u,))

ac[-%.2¥]
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for S varying among the possible values of S,,_;. We denote by «,, = v, (V)
the minimum point for V varying among the possible values of V,,_;.

In our setting, as a first step of the DP algorithm we compute R;(V,S) for
S e {2, 1, %} We have

Ry (V,2) = ae[Eﬂ‘;I/lQ)v] EP UV 4 2012, 2(1 + p2))]
= B (20 ) - ) - (7 + 20p) ]
N ae[r—n&%,w % ((3 —V=20)" +(1- V)+) - g (1-n"*,
and the minimum is attained at
az = V. (2.131)

Next we have

Ri(V,1) = min EP UV + apz, 1+ po)]

. +
- ae[I?g,le] B [(H; -+ Oé’uQ)) ]

= -(1-V - =-(1-3V
aein, 3 ( )’ =3 )"
and the minimum is attained at

ay =2V. (2.132)

Moreover we have

1 1
R1 ‘/77 = min EP u V+%, +/L2
2 ag[—2V,4V] 2 2

1 +
min EF <—|—2,u2_1> —(V—I—%>

ag[—2V,4V] 2
—_— ——
=0 >0

+

|
o

and the minimum is attained at any

oy € [—2V,4V]. (2.133)
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The second step consists in computing the risk at the initial time:

Ro(V,1) = _min E"[Ry (V + apn, 1+ )]

ae[rzlgbv] (R (V,1)+ R (V+«,2))

, 1 L4 N
—(1 -3V —(1—(V
i (3< RO +a>>)

Ol Ut Wl W=

(1-3V)", (2.134)

and the minimum is attained at
a; = 2V. (2.135)

By formula (2.134) for Rg (V,1), it is clear that an initial wealth V > 1 is
sufficient to make the shortfall risk null or, in more explicit terms, to super-
replicate the payoff.

Next we determine the shortfall strategy, that is the self-financing strategy
that minimizes the shortfall risk. Let us denote by Vj the initial wealth: by

(2.135) we have

o] = 2%.
Consequently, by (2.130) we get
2V0, for H1 = 1,
Vi=W+<0, for py =0,
-V, for pu; = —%.

Then by (2.131)-(2.132)-(2.133) we have

3V, if 51 =2,
g = 2‘/0, if Sl = 1,
0, if S =1,

and we can easily compute the final value V5 by means of (2.130). We represent
in Figure 2.9 the trinomial tree with the prices of the underlying asset and the
values of the shortfall strategy inside the circles. On the right side we also in-
dicate the final values of the option and of the shortfall strategy corresponding
to Vy = % We remark that we have perfect replication in all scenarios except
for the trajectory So = S1 = So = 1 for which we have super-replication: the
terminal value of the shortfall strategy Vo = % is strictly greater than the
payoff of the Call option that in this case is null. |
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Final value

Payoff
for Vp = %

3 3

o
W=

Fig. 2.9. Two-period trinomial tree: prices of the underlying asset and values of
the shortfall strategy with initial wealth Vp are inside the circles

2.5 American derivatives

In this section we examine pricing and hedging of American-style deriva-
tives. We consider a generic discrete market (S, B) defined on the space
(2,F, P, (F,)). American derivatives are characterized by the possibility of
early exercise at every time t,, 0 < n < N, during the life span of the con-
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tract. To describe an American derivative it is therefore necessary to specify
the premium (or payoff) that has to be paid to the owner in case he/she
exercises the option at time ¢, with n < N. For example, in the case of an
American Call option with underlying asset S and strike K, the payoff at time
tn is Xp = (Sp — K)T.

Definition 2.53 An American derivative is a non-negative discrete stocha-
stic process X = (X,,) adapted to the filtration (F,).

By definition, X, is a non-negative JF,,-measurable random variable: the mea-
surability condition describes the fact that the payoff X, is known only at
time t¢,,. We say that X is path-independent if X,, is o (S, )-measurable, for
every n, so that there exist measurable functions ¢,, such that X,, = ¢, (S,).

Since the choice of the best time to exercise an American option must
depend only on the information available at that moment, the following defi-
nition of exercise strateqy seems natural.

Definition 2.54 A stopping time
v: 2 —{0,1,...,N},
i.e. a random variable such that
{v=n} € Fp, n=0,...,N, (2.136)

is called exercise strategy (or exercise time). We denote by Ty the set of all
exercise strategies.

Intuitively, given a path w € 2 of the underlying market, the number v(w)
represents the moment when one decides to exercise the American deriva-
tive. Condition (2.136) merely means that the decision to exercise at time ¢,
depends on F,,, i.e. on the information available at t,,.

In the rest of the paragraph we assume that the market (S, B) is arbitrage-
free and so there exists at least one EMM @ equivalent to P, with numeraire
B. Hereafter

denotes the discounted price of any asset Y.

Definition 2.55 Given an American derivative X and an exercise strategy
v € 1y, the random variable X,, defined by

(Xl/) (w) = Xu(w)(w)? w € {2,

18 called payoff of X relative to the strateqy v. An exercise strateqy vg is called
optimal under Q if

E? [)?VO} = suwp E@ [)?V} . (2.137)
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We observe that the random variable

can be interpreted as the discounted payoff of a Furopean option: in particular
E° {XV} gives the risk-neutral price relative to @ of the option (cf. Definition

2.51) when the option is exercised following the strategy v. The greatest price
among all exercise strategies corresponds to the optimal exercise strategy:
that price is equal to the greatest expected payoff with respect to the fixed
EMM.

2.5.1 Arbitrage price

In an arbitrage-free complete market, the price of a Furopean option with
payoff Xy is by definition equal to the value of a replicating strategy: in
particular, the discounted price is a martingale with respect to the risk-neutral
measure Q. Pricing an American option X = (X,,) is a slightly more delicate
matter since it is not possible to determine a self-financing predictable strategy
(o, B) that replicates the option in the sense that Vn(aﬂ) = X, for every
n =0,..., N: this is simply due to the fact that V(@h) iga @-martingale while
X is a generic adapted process. On the other hand, it is possible to develop
a theory of arbitrage pricing for American options, essentially analogous to
the European case, by using the results on stopping times, martingales and
Doob’s theorems collected in Appendix A.6.

Let us begin by observing that, by arbitrage arguments, it is possible to
determine upper and lower bounds to the price of X: to fix ideas, as in the
European case we denote by Hy the (unknown and possibly not unique) initial
price of X. Recalling that A denotes the family of self-financing predictable
strategies, we define

Ak ={(,B) € A| V> > X,, n=0,...,N},

the family of those strategies in A that super-replicate X. By Remark 2.18, to
avoid introducing arbitrage opportunities, the price Hy must be less or equal
to the initial value Vo(a’ﬁ) for every (a, ) € A% and so

Hy< inf VP,
(a,8) €A%

On the other hand we put
Ay = {(a, B) € A| there exists v € Ty s.t. X, > V(@A)

Intuitively, an element (o, 3) of Ay represents a strategy in which a short
position is taken, to get money to invest in the American option. In other
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words, Vo(a’ﬁ ) represents the amount of money that one can initially borrow
to buy the option X, knowing that there exists an exercise strategy v yielding
a payoff X, greater or equal to Vl,(a”@ ), corresponding to the amount necessary
to close the short position in the strategy («, ). The initial price Hy of X
must necessarily be greater or equal to VO(O"B ) for every (a, 3) € Ay if this
were not true, one could easily build an arbitrage strategy. Then we have

sup Vo(a’g) < Hy.
(a,B)EAL

Therefore we determined an interval to which the initial price Hy must be-
long, in order to avoid introducing arbitrage opportunities. Let us show now
that risk-neutral pricing relative to an optimal exercise strategy respects such
conditions.

Proposition 2.56 For every EMM Q, we have

sup ‘70(0"5) < sup E© [f(,,} < inf 170(‘1’6). (2.138)
(,B)eAL veTy (a,8)eA

Proof. If (o, B) € Ay, there exists vy € 7y such that V,,(a) < X,,,. Further,

V(@h) ig a @-martingale and so by the Optional sampling Theorem A.129 we
have _ - ~
Vo(a,ﬁ) — @ {Vy((f‘ﬁ)] < E9 [XV0:| < sup E? [XV} )
veTy

hence we obtain the first inequality in (2.138), by the arbitrariness of (a, 8) €
Ax.

On the other hand, if (o, 8) € A% then, again by Theorem A.129, for
every v € T; we have

7eh) _ gQ [ﬁy(aﬁ)] > E@ [)?] :

hence we get the second inequality in (2.138), by the arbitrariness of («, ) €
AL and v € 7. 0

Under the assumption that the market is arbitrage-free and complete'?,
the following theorem shows how to define the initial arbitrage price of an
American derivative X in a unique way.

Theorem 2.57 Let X be an American derivative in an arbitrage-free and
complete market. Then there ezists (o, 8) € A% N A and so we have:

i) Vi > X, n=0,...,N;
it) there exists vy € Ty such that Vyf’ﬁ) =X,,-

13 According to Definition 2.27, this means that every Furopean derivative is repli-
cable.
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Consequently'*

VP = sup EQ [5(4 = B9 [f(,o} : (2.139)
veTy

defines the initial arbitrage price of X.

Proof. The proof is constructive and is made up of three main steps:

1) we construct the smallest super-martingale H greater than X, usually
called Snell envelope of the process )?;

2) we use Doob’s decomposition theorem to find the martingale part of the
process H and by this we determine the strategy (o, 8) € AL N Ay;

3) we conclude by proving that Hy = Vo(a’ﬁ) and (2.139) holds.

First step. We define iteratively the stochastic process H by putting

~ XN, n = N,

H, = - ~ (2.140)
maX{Xn,EQ {Hnﬂ\fn”, n=0,...,N—1.

Below we will see that the process H defines the discounted arbitrage price

process of X (cf. Definition 2.60). It is indeed an intuitive notion of price

that gives rise to the definition above: indeed the derivative is worth Xy at

maturity and at time ty_; it is worth

o Xpy_1 if one decides to exercise it;
o the price of a European derivative with payoff Xy and maturity ¢, if one
decides not to exercise it.

Consistently with the arbitrage price of a European option (2.27), it seems
reasonable to define

Hlemax{XNl, EQ [HN|~7:N1}}

1+7r

By repeating this argument backwards and setting H, = %, we get definition
(2.140). '

Next we show that H is the smallest super-martingale greater than X.
Evidently, H is an adapted non-negative stochastic process. Further, for every
n, we have

i, > E° [ﬁnﬂ | fn} : (2.141)

ie. Hisa Q-super-martingale. This means that H “decreases in mean” (cf.
Section A.6): intuitively this corresponds to the fact that, moving forward
in time, the advantage of the possibility of early exercise decreases. More
generally, from (2.141) it follows also that

ﬁszQ[ﬁﬂfk}, 0<k<n<AN.

14 Recall that, by assumption, By = 1 and therefore Vp = Vo.
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We conclude by showing that H is the smallest super-martingale that domi-
nates X: if YV is a @-super-martingale such that Y;,, > X,,, then we have

Hy = Xy < Yy.

Then the thesis follows by induction: indeed, assuming IAi:n <Y,, we have

H, 1 = max {f(n_l, EQ {ﬁn | fn_l}}
< max {)Z'n,l, E°|Y, | .7:”,1]}

< max {)?n—l,an} =Y, 1.

Second step. We prove that there exists (a, 3) € A% N A% Since His a
@-super-martingale, we can apply Doob’s decomposition Theorem A.119 to
get _

H=M+A

where M is a @-martingale such that My = I:TO and A is a predictable de-
creasing process with null initial value.

By assumption the market is complete, and so there exists a strategy
(o, B) € A that replicates the European derivative My. Further, since V(®#)
and M are martingales with the same terminal value, they are equal:

Vo = B[V | F| = B My | Fal = My, (2.142)
for 0 < n < N. Consequently, («, ) € A} : indeed, since A4,, < 0, we have
v =M, >H,>X,, 0<n<NAN.
Moreover, since Ay = 0, we have
Vi) = My = H,.

Then («, 3) is a hedging strategy for X that has an initial cost equal to the
price of the option.
In order to verify that («, 8) € Ay, we put:

vo(w) = min{n | Hy(w) = Xp(w)}, we (2.143)
Since
{vo=n}={Hy> X} N{Hy1> X, 1} N{H, = X,} € F,

for every n, then vy is a stopping time, i.e. an exercise strategy. Further, v is
the first time that X, > E9 |:Hn+1 | fn] and so intuitively it represents the

first time that it is profitable to exercise the option.
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According to Doob’s decomposition theorem and in particular by (A.107),
forn=1,..., N, we have

n—1
M,=H,+Y (ﬁk — E@ [ﬁkH | ]—"k]) , (2.144)
k=0
and consequently N
M,, = H,, (2.145)
since _ _
H, = E® [Hk+1 | fk} over {k <up}.
Then, by (2.142), we have
v@s) — pp o —
Vo 14
(by (2.145))
= ﬁVO =
(by the definition of 1)
=X, (2.146)

and this proves that (o, 8) € Ax.

Third step. We show that v is an optimal exercise time. Since («a, ) €
A% N Ay, by (2.138) in Proposition 2.56 we get

Vo(a’ﬁ) = Sélq[z E° [f(,,} .
vely

On the other hand, by (2.146) and the optional sampling Theorem A.129, we
have N
‘/()(‘%,3) = EQ |:Xl/0:|

and this concludes the proof. O

Remark 2.58 The preceding theorem is significant from both a theoretical
and practical point of view: on one hand it proves that there exists a unique
initial price of X that does not give rise to arbitrage opportunities. On the
other hand it shows a constructive way to determine the main features of X:
i) the initial price ffo = sup E@ {X’V} that can be computed by the iterative
veTy
formula (2.140) (see also (2.148) below);
ii) an optimal exercise strategy vg for which we have

E® [)?yo} = sup E© [)?V} = Hoy;
veTy
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iii) a hedging strategy (o, ) € A% N Ay such that ViR > X, for any n
and whose initial cost equals the initial arbitrage price fIO. More precisely,
(a, B) is the replicating strategy for the European option My: in Section
2.5.3, we will analyze more in details how to compute (a, 3). O

Remark 2.59 For fixed n < N, we denote by
T, ={veT|v>n}

the family of exercise strategies of an American derivative bought at time t,,.
A strategy v, € 7, is optimal if

EQ[ l,n|‘7-"n]fsupEQ[ V|f}
veT,

If H is the process in (2.140), we denote the first time it is profitable to
exercise the American derivative bought at time t,, by

Vn(w) = min{k > n | Hy(w) = Xp(w)}, we .

We can easily extend Theorem 2.57 and prove that v, is the first optimal
exercise time following n. To be more precise we have

H—EQ[Vn\f}—su;)EQ[”}"} (2.147)
vel,
O

Definition 2.60 The process H defined by H,, = B, H, with H as in (2.140),
is called arbitrage price of X. More explicitly we have

= A n=N, 2.148
" max{melrEQ[HnHmn]}, n=0,...,N—1. (2.148)

Remark 2.61 In the proof of Theorem 2.57 we saw that hedging X is equi-
valent to replicating the (European) derivative My . Let us point out that, by
(2.144), we have

Mo+ S (Km0 [Hn | A]) = Bt 1<ns N,

and so M, can be decomposed as the sum of the discounted price I;fn
and the term I,, that can be interpreted as the value of early exercises: as
a matter of fact, the terms of the sum that defines I,, are positive when

)?k > E@ [.ﬁk+1 | .7-';6} , i.e. at times that early exercise is profitable. To fix
the ideas, if n = 1, we have
~ ~ ~ +
M, = H, + (XO o [Hl}) : (2.149)

d
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2.5.2 Optimal exercise strategies

The optimal exercise strategy of an American derivative X is not necessarily
unique. In this section we aim at giving some general characterization of op-
timal exercise strategies and to determine the first and the last ones of these
strategies.

Hereafter we assume that the market is arbitrage-free but not necessarily
complete. For a fixed EMM @, we denote by H the Snell envelope of X,
with respect to @, defined in (2.140). We recall that, by (2.137), an exercise
strategy v € 7y is optimal for X under @ if we have

E® [)?4 — max E? [X } .
veTy
Moreover, given a process Y and a stopping time v, we denote by Y” = (Y}¥)
the stopped process defined as
Y:(w) = Yn/\u(w)(w); w € .

By Lemma A.125, if Y is adapted then Y is adapted; if Y is a martin-
gale (resp. super/sub-martingale) then Y is a martingale (resp. super/sub-
martingale) as well.

Lemma 2.62 For any v € Ty we have

EQ [)?V] < H. (2.150)
Moreover v € Ty is optimal for X under Q if and only if

EQ [}?V] ~ Hy. (2.151)

Proof. We have

EQ [Xl,} Y pe [Er,,] — B9 [Erﬁv] 2, (2.152)

where inequality (1) is a consequence of the fact that X,, < H,, for any n and
(2) follows from the Q-super-martingale property of H and Doob’s optional
sampling Theorem A.129.

By (2.150), it is clear that (2.151) is a sufficient condition for the optima-
lity of v. In order to prove that (2.151) is also a necessary condition, we have
to show the existence of at least one strategy for which (2.151) holds: actually,
two of these strategies will be explicitly constructed in Proposition 2.64 below.
The reader can check that the proof of Proposition 2.64 is independent on
our thesis so that no circular argument is used. We also remark that, under
the assumption of completeness of the market, an exercise strategy verifying
(2.151) was already introduced in the proof of Theorem 2.57. a
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Corollary 2.63 Ifv € 1y is such that
Z) XV = ﬁu;
it) H" is a Q-martingale;

then v is an optimal exercise strategy for X under Q.

Proof. Conditions ¢) and 4i) imply that (1) and (2) in formula (2.152) are
equalities. Consequently E® {)N(l,} = Hj and therefore, by Lemma 2.62, v is
optimal for X under Q. a

Next, for greater convenience, we introduce the process

1
E,=——E®[H,.1 | F.l, <N -1, 2.153
T [(Hpi1 | Fnl n < ( )

and we also set Ey = —1. Then by (2.148) we have
H, = max{X,, E,}, n <N,

and the sets {n | X,, > E,} and {n | X,, > E,} are nonempty since Xy > 0
by assumption. Consequently the following definition of exercise strategies is
well-posed:

Vmin = min{n | X, > E,}, (2.154)
Vmax = min{n | X,, > E, }. (2.155)

Proposition 2.64 The exercise strategies Vpin and vmax are optimal for X
under Q.

Proof. We show that vy, and vyax are optimal by verifying the conditions
i) and %) of Corollary 2.63. By definition (2.154)-(2.155) we have that

H

Vmin

= max {Xumin7 Ellmin} = X
=max{Xo,..; Bvpar ) = Xvpors

Vmin)

Vmax

and this proves 7). Next we recall that by Doob’s decomposition theorem we
have _
Hn:Mn+An,7 TLSN,

where M is a Q-martingale such that My = Hy and A is a predictable and
decreasing process such that Ay = 0. More precisely we have (cf. (A.108))

n—1

An:_Z(ﬁk_Ek>7 n:l,...,N.
k=0

By definition (2.154)-(2.155), we have

H,=E, in {n<vmx-—1}
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so that
A, =0 in {n <wvpax/}, (2.156)
and
A, <0 in {n>vmax + 1} (2.157)
Thus we get _
H,=M, in {n<wvnax}, (2.158)

and since clearly vpin < Vmax, we have
ITVmin Vmi TV _ 12
H min — M mm, H max — M max

Consequently, by Lemma A.125, the processes Hvmin and HYwex are Q-
martingales: this proves i7) of Corollary 2.63 and concludes the proof. O

We close this section by proving that vy, and vyay are the first and last
optimal exercise strategies for X under @, respectively.

Proposition 2.65 Ifv € Ty is optimal for X under @ then
Vmin <V < Viax.
Proof. Let us suppose that
P (v < Umin) > 0. (2.159)

We aim at proving that v cannot be optimal because (1) in (2.152) is a strict
inequality. Indeed, since P and @ are equivalent, from (2.159) it follows that

Q(X, <) >0,
and therefore, since )Z',, < I;f,,, we get
B2 [X,| < B9 |H,].
On the other hand, let us suppose that

P (V> Umax) > 0. (2.160)

In this case we prove that v cannot be optimal because (2) in (2.152) is a
strict inequality. Indeed, since P, (@ are equivalent and A is a decreasing and
non-positive process, from (2.157) it follows that

E9[A,] <.
Consequently we have

Jo [ﬁy} = EQ[M,] + E?[A,] < My = Hy. 0
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2.5.3 Pricing and hedging algorithms

We consider an American derivative X in a complete market (S, B) where
@ is the EMM with numeraire B. By the results of the previous sections,
the arbitrage price of an American derivative X is defined by the recursive
formula

X =N
H, =N = (2.161)
max{X,,E,}, n=0,...,N—1,

where FE is the process defined by Ey = —1 and

E, = E?EQ [Hpp1 | Fn], n<N-1. (2.162)
A remarkable case is when the underlying assets are modeled by Markov
processes (as in the binomial and trinomial models by Theorem 2.31) and the
American derivative is path-independent, that is X = (¢,(S,)) where ¢, is
the payoff function at time ¢,. In this case, by the Markov property of the
price process S, the arbitrage price is given by

I QON(SN)7 n = N,
" max{gpn(Sn),l—irEQ [Hpt1 | Sn}}, n=0,...,N—1,
(2.163)
and therefore H,, can be expressed as a function of 5,,.
Once we have determined the process E in (2.162), the minimal and maxi-
mal among optimal exercise strategies are given by

Vmin = min{n | X,, > E, }, Vmax = min{n | X,, > E,}. (2.164)

Concerning the hedging strategy, at least from a theoretical point of view,
this problem was solved in Theorem 2.57: indeed a super- and sub-replicating
strategy (o, 3) (i.e. a strategy (o, 8) € A% N .A%) was defined as the replica-
ting strategy for the European derivative My . We recall that M denotes the
martingale part of the Doob’s decomposition of H, that is the Snell envelope
of X, and once H has been determined by (2.140), then the process M can
be computed by the forward recursive formula (cf. (A.105))

My =Hy,  Myi1=M,+Huyyy — E {ﬁnﬂ | }'n] : (2.165)

consequently the hedging strategy can be determined proceeding as in the
European case. However My is given by formula (2.165) in terms of a condi-
tional expectation and therefore My is a path-dependent derivative even if X
is path-independent. So the computation of the hedging strategy can be bur-
densome, since My is a function of the entire path of the underlying assets
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and not just of the final values. As a matter of fact, this approach is not used
in practice.

Instead, it is worthwhile noting that the process M,, depends on the path
of the underlying assets just because it has to keep track of the possible early
exercises: but at the moment the derivative is exercised, hedging is no longer
necessary and the problem gets definitely easier. Indeed we recall that (cf.
(2.158))

H, =M, for n<Umax, (2.166)

where vy, is the last optimal exercise time by Proposition 2.65. In particular,
before vyax the hedging strategy can be determined by using directly the process
H instead of M : this is convenient since if X is Markovian, i.e. X,, = ¢, (Sn),
then H is Markovian as well by (2.163).

Next we consider the special case of the binomial model. We use notation
(2.65) and, for a path-independent derivative with payoff X,, = ¢,(S,) at
time ¢,, by the Markovian property of the arbitrage price in (2.163), we set

Then the binomial algorithm that we presented in Section 2.3.3 can be easily
modified to handle the possibility of early exercise. More precisely we have
the following iterative pricing algorithm:

Hy g = ¢n(SNnk), k <N,
Hy 1= max{wnq(an,k), 1—J1ﬂ,(an,k+1 +(1- Q)Hn,k)} , E<n—-1,
(2.167)
withn=1,...,N and ¢ = % where u, d, r are the binomial parameters.

Concerning the hedging problem, by using identity (2.166) we have that
the hedging strategy for the n-th period, n < vy, is simply given by
Hy, w41 — Hp i uHy , — dHp j41

T S T G- d)

k=0,...,n—1,

(2.168)
exactly as in the European case. We recall that (o, k, Bnk) s the strategy
for the n-th period [tn—1,ty], that is constructed at time t,_1 in the case
Sn—l = Sn—l,k-

At time ¢, it is not necessary to compute the strategy (au,.... 1> Bvmanis)
(for the (Vmax+1)-th period) since ¢, __ is the last time at which it is profitable
to exercise the American option. If the holder of the option erroneously does
not exercise at a time preceding or equal to t,,__, then he/she gives rise to
an arbitrage opportunity for the writer: indeed, since the value of the hedging
strategy is equal to M, . , for the writer it suffices to adopt the strategy
(2.168) with n = vjpax + 1 at time ¢ to get at time ¢, +1

Vmax)

Mumax-H > HVxnax+1 > XVxnax"l‘l?

that is strictly greater than the payoff.



2.5 American derivatives 85

Fig. 2.10. Binomial tree with asset prices (inside the circles) and payoff X of the
American Put with strike K = %

Example 2.66 In a three-period binomial model, we consider an American
Put option with payoff X,, = (% —Sp)t, n = 0,1,2,3. We assume that
u=2d=r= % and the initial price of the underlying asset is So = 1. In
Figure 2.10 we represent the asset prices and the values of the payoff of the
American Put on the binomial tree.

We first compute the arbitrage price process H and the minimal and maxi-
mal optimal exercise strategies. By (2.167) we have

1 g+ _
g =10 531) : n=3 (2.169)
max{(i—Sn)ﬂEn}, n=0,1,2,

where E is the process in (2.162), that is F5 = —1 and

E, = ﬁEQ [Hpi1 | Fn], n=0,1,2.
At maturity we have
Hy3 = X335= (43— 8)+ =0,
H3o=X30= (3 - 2)+ =0,
Hs1 =Xs1= (35— %)+ =0,
Hyo=Xs0=(5-3)" =%

Subsequently, by (2.169), we have
Xoo=Xo1=Ez2=1FE; =0,
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so that Hy 9 = Hy 1 = 0. Moreover

and
1 2 3 1
Boo= — (qHs1+(1—q)Hso) = - (g 04+ (1=q)° ) = —
0= 1 s+ (-0 = 5 (404003 ) =
since ¢ = 1249 = 2 Then we have
1
Hy o =max{Xs,F20} = Xo0 = 1

At the previous time we have X1 1 = Ey; = H; 1 =0 and

1 1/1—gq 1
E - T H 1— H = — = —
1,0 1+r(q 21+ (1 —q)Hz2) 4<1+r> 18’
so that, since X; 9 =0, we have H, g = E1 9 = %. Lastly, we have X9 =0

and therefore

Hyo = Eypo = 1—_}_74 (qH11+ (1 —q)Hio) = 8_11
To make the following computations easier, in Figure 2.11 we represent the
values of the processes X (inside the circles) and E (outside the circles),
writing in bold the greater of the two values that is equal to the arbitrage
price H of the American option.
Examining Figure 2.11 we can easily determine the minimal and maximal
optimal exercise strategies: indeed, by definition (2.164) we have

1 on {Sl = Sl,l}

Vmin = min{n | Xn = En} = {2 on {81 =510}

Analogously we have

2 on {SQ = 5270}

Vmax = mindn | X > B} = {3 otherwise

These extreme optimal strategies are represented in Figure 2.12.

Next we compute the hedging strategy (a, ). As we already explained,
even if («, ) is the replicating strategy of the European derivative My in
(2.165), it is not necessary to determine My explicitly: instead, we may use
the usual formulas (2.168) for n < vpyax. Thus, in the first period we have

o Hl,l _Hl,O - 0* %8 - 1 o UHI,O — dHl,l - 21718 - 4
Q1,0 = - 3 — T 50 51,0—7—T—_-
(u—d)Sy 27 (14+7)(u—d) 9 81

2
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-1

Fig. 2.11. Values of the processes X (inside the circles) and E (outside the circles)

Vmax

gies

Fig. 2.12. Minimal (on the left) and maximal (on the right) optimal exercise strate-

In the second period, the strategy is the following:

, By = uHs 1 —dHso 0
(w—d)Si1 ST r2u—d)
S Hyy — Hao _ —i _ 1 By = uHs o — dHs 1

2T (u—d)Siy 3L 3 20

4
(14+r)2u—d) 27
In the last period we have to compute the strategy only for S; = S and

Sy = Sa1 since in Sy = Sy there is the last opportunity of optimal early
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Fig. 2.13. Hedging strategy for 0 < r < 1

exercise (see also Figure 2.12). Then we have

o — Hzs — Hzo _ 0 By = ulsos —dHz3 0
22T u—d)Syy 2T A 4rpPlu—d)
o 1:H3,2—H3,1 _0 By = uHs ) — dH3 —0
BT (w—d)Syy T A 4rpPu—d
The hedging strategy is represented in Figure 2.13. O

2.5.4 Relations with European options

In an arbitrage-free and complete market, we denote by (H?) the arbitrage
price of the American derivative X and by (HF) the arbitrage price of the
related European derivative with payoff X . We recall that

ﬁ[f:maxEQ[)},,|fn}7 ﬁf:EQ[)?N|fn}7 n=20,...,N,

veT,

where @ is the EMM.

The next result establishes some relations between the prices of American-
style and European-style derivatives. In particular we prove that an American
Call option (on a stock that does not pay dividends and assuming that r > 0)
is worth just as the corresponding European option.
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Proposition 2.67 We have

i) H;?ZHE for0<n < N;
i) if HE > X,, for every n, then

H} = HE, n=0,...,N,
and v = N is an optimal exercise strategy.

Proof. i) Since HAis a @Q-super-martingale, we have
Hi > BQ [ 7| = B9 [Xy | 7| = HE,

hence the claim, since B,, > 0. This first part states that, in general, an Ame-
rican derivative is worth more than its corresponding European counterpart:
this fact is intuitive because an American derivative gives more rights to the
holder who is free to exercise it even before maturity.

ii) By hypothesis, HE is a martingale (and thus also a super- martingale)
greater than X . However H4 is the smallest super- martingale greater than X
(cf. first step in the proof of Theorem 2.57): therefore we have H4 = HF and
also HA = HF. |

Remark 2.68 Assume r > 0. We have

- 1 1 ~ K
E _ Q _ + > Q _ — _ .
HY = 519 [(Sx ~ K) FAE 5o e[Sy — K| Rl =50 - 5.

Since r > 0, we get

B,
HE > S, — K=" >§, -
By

and since HY > 0, we also have
HE > (s, - K)*.

As a consequence of the second part of Proposition 2.67, an American Call
option is worth as the corresponding European option.

We can also give an intuitive meaning to the preceding result: it is known
that instead of exercising an American Call option before maturity it is more
profitable to sell the underlying asset. Indeed, if the owner of an American
Call option decided to exercise it early at time n < N, he/she would get a
S,, — K profit, that becomes (1 +7)N~"(S,, — K) at maturity. Conversely, by
selling one unit of the underlying asset at time ¢,, and keeping the option, at
maturity he/she would get

(1+4r)N-"g, — K, if Sy > K,

1 N-ng _ g Sy —K)t =
( +’I") N+( N ) {(1+T)N_n5n—SN7 if Sy < K.

Therefore in all cases, if r > 0, the second strategy is worth more than the
first. O
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Example 2.69 The equivalence between the prices of American and Euro-
pean derivatives does not hold for Call options that pay dividends and for Put
options. As a simple example, let us consider an American Put option in a
one-period binomial model (N = 1) with » > 0 and, for the sake of simplicity,

1+t r—d 1

u—d 2
Then u+d = 2(1+r) and the price of the corresponding European Put option

is
1

2(1+r)
(if, for example, K > uSy)

Po = ((K — USO)+ + (K — d50)+) =

1 K
=—(K — - = — —5,.
2(1+7”)( uSy + K dSO) s So

For the American Put option we have
Po = max {K — S(),p()} =K — SO

and so in this case it is profitable to exercise the option immediately. a

2.5.5 Free-boundary problem for American options

In this section we study the asymptotic behaviour of the binomial model for an
American option X = (¢, .5) as N goes to infinity and we prove a consistency
result for American-style derivatives, analogous to the one presented in Section
2.3.5. As we are going to see, the Black-Scholes price of an American option
is the solution of a so-called “free-boundary problem” that is in general more
difficult to handle than the classical Cauchy problem for European options. In
this case pricing by the binomial algorithm becomes an effective alternative
to the solution of the problem in continuous time.

We use the notations of Section 2.3.6: in particular we denote the arbitrage
price of the derivative by f = f(¢t,S), (¢,S) € [0,T] x Rsq, and we put § = %;
the recursive pricing formula (2.167) becomes

F(T,5) = (T, 9),
£(t,8) = max { = (af (¢ + 6,uS) + (L= @)f(t+6.d5)) (2. 5) }
(2.170)
The second equation in (2.170) is equivalent to

max{w,tp(t,k@) - f(t,S)} =0

where J;s is the discrete operator in (2.112). By using the consistency result
of Proposition 2.50, we get the asymptotic version of the discrete problem
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(2.170) as ¢ tends to zero:

max {LBva @ — f} = Oa in ]OvT[XR>O7 (2 171)
f(T7S):<)0(T7S)7 S€R>Oa
where
02852

LBSf(tvs) = 8tf(tv‘s) + 5ssf(t,5) + TSaS'f(tvS) - ’I"f(t,S)

2
is the Black-Scholes differential operator. Problem (2.171) contains a diffe-
rential inequality and is theoretically more difficult to study than the usual
parabolic Cauchy problem: we will prove the existence and the uniqueness of
the solution in Paragraph 8.2. On the other hand, from a numerical point of
view, the classical finite-difference methods can be adapted without difficulties
to such problems.

The domain of the solution f of problem (2.171) can be divided in two
regions:

[0,T[xRs¢ = Re U R,

where!?

R, ={(t,5) € [0, T[xRsq | Lesf(t,5) <0 and f(¢,59) = ¢(t,5)}
is called early-ezxercise region, where f = ¢, and

R.={(t,5) € [0,T[xRs¢ | Lesf(t,S) =0 and f(t,5) > ¢(t,5)}

is called continuation region, where f > ¢ (i.e. it is not profitable to exer-
cise the option) and the price satisfies the Black-Scholes equation, as in the
European case.

The boundary that separates the sets R., R. depends on the solution f
and is not assigned a priori in the problem: if this were the case, then problem
(2.171) could be reduced to a classical Cauchy-Dirichlet problem for Lpg over
R. with boundary value ¢. On the contrary, (2.171) is usually called a free
boundary problem because finding the boundary is an essential part of the
problem. Indeed, from a financial point of view, the free boundary determines
the optimal exercise price and time.

Example 2.70 In the particular case of an American Put option, ¢(S) =
(K — S)* with maturity 7', some properties of the free boundary can be
proved by resorting solely to arbitrage arguments. Let us put

Re(t) ={S | (t,5) € Re}.
15 Since

{max{F(z),G(z)} =0} ={F(z) =0, G(z) <0} U{F(z) <0, G(z) = 0}.
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h - -,
\ Ay TN
A s N,
,

Free boundary

N"

Fig. 2.14. Exercise and continuation regions of an American Put option

Then, under the assumption that the risk-free rate r is positive, for every
t € [0, 7] there exists 3(t) €]0, K[ such that

R.(t) =10, 5(t)].

Indeed let f(t,.S) be the price of the option. Then f(¢,.5) is strictly positive
for every t € [0, T[: on the other hand, since ¢(S) =0 for S > K, we have

R.(t) C{S< K}, te[0,T] (2.172)

Further, by definition, R,(t) is relatively closed in Rsg. R(t) is an interval
because of the convexity with respect to S of the price: if Sy, S2 € Re(t), then
for every o € [0, 1] we have

p(0S1 + (1= 0)52) < f(t, 051 + (1 —0)92) < of(t,51) + (1 — 0) f(t,52) =
(since S1,52 € R.(t) and by (2.172))
=0(K = 51) + (1 = 0)(K = 52) = (051 + (1 = 0)52),

and so 951 + (1 — 0)S2 € R.(t). The fact that the price function is convex can
be proved by using the no-arbitrage principle.
Finally we have
10, K — Ke "T=Y] C R,(t).

Indeed, if S < K(1 — e "(T=9), then it is profitable to exercise the option,
since at time ¢ one receives the amount

K—8>Ke Tt
that, at maturity, yields

(K —S)e" ™0 > K > f(T,5).
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By arbitrage arguments it is also possible to prove that ( is a continuous and
monotone increasing function. Figure 2.14 depicts the exercise and continua-
tion regions of an American Put option. o

Going back to the general case, we point out that, by definition, we have
Re - {<t7S) € [O?T[XR>O | LBSSD(tMg) < 0}7 (2173)

and this raises the question about the regularity assumptions we have to
impose on ¢, and also about what kind of regularity we might expect for the
solution f of (2.171). Indeed, even in the simplest case of a Put option, the
payoff function ¢ = ¢(S) is not differentiable at S = K and Lpsy is not
defined everywhere in the classical sense. However in this case, by using the
theory of distributions (cf. Appendix A.9.3), we get

0_2 K2
2

Lps(K — 8)* = 5K(S)—TK1]O,K[(S)7

where di denotes Dirac’s delta distribution, concentrated at K. Therefore, if
r > 0, at least formally we have

<0 S <K

Lgs(K—S)" ¢ " ’

sl =) {zo, S =K,
and (2.173) is verified, recalling (2.172). Concerning the regularity of the so-
lution, problem (2.171) does not admit in general a classical solution: in Para-
graph 8.2 we will prove the existence of a solution in a suitable Sobolev space.

We conclude the section by stating a result analogous to Theorem 2.46
on the approximation of the continuous case by the binomial model: for the
proof we refer to Kushner [220] or Lamberton and Pages [228].

Theorem 2.71 Let P{(0,S) be the price at the initial time of an American
Put option with strike K and maturity T in the N-period binomial model with

parameters
un = eU\/5N+a5N’ dy = e—tT\/5N+55N7
where o, 3 are real constants. Then the limit

Jim P{(0,8) = £(0,5), S>0
exists and f is the solution of the free-boundary problem (2.171).

2.5.6 American and European options in the binomial model

In this section, by using the arbitrage pricing formulas in the N-period bino-
mial model, we present a qualitative study of the graph of the price of a Put
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option, as a function of the price of the underlying asset, and we compare the
American and European versions.

Let PE and P4 be the prices of a European and an American Put option,
respectively, with strike K on the underlying asset S: using the notations
of Paragraph 2.3, and denoting the initial price of the underlying asset by

So = x, we have
n

Sp = 2y, Yn = H(1+.U'k)

k=1

and the arbitrage prices at the initial time have the following expressions:

E _ (K_@WN)Jr

PE(z) = E9 [7(1—1—7')]\’ } (2.174)
A(z) = su Q 7(1{—:13@[1,,)*

PA( )_Ve%E [ ST } (2.175)

Proposition 2.72 Assume that the parameter d in the binomial model is
smaller than 1. The function x — P (z) is continuous, convezx and decreasing
for x € R>q. Further,

K

PE(z) =0, x € [Kd™N, o0,

and there exists T €0, K[ such that

PE(z) < (K — )%, z €0,], PE(z) > (K —x)*, z €[z, Kd™"].
(2.176)
The function x — PA(x) is continuous, convex and decreasing for x € R>o.
Further,
PA0) = K, PAz)=0, z € [Kd™N, 400,

and there exists x* €]0, K[ such that

PAz) = (K — )", = €0,2"], PAz) > (K —z)F, ez, Kd™N].
Proof. We can write (2.174) more explicitly as

N
1
E h gN—h_\+
P (x)_i(l o hEZO:ch(K—u dN“h )t

where ¢, = q"(1—q)N =" are positive constants. Hence we infer directly

N
h
the properties of continuity, convexity and the facts that the price function is
monotone decreasing and that P¥(z) = 0 if and only if (K — u"dN~"z)* =0
for every h or, equivalently, if u*d¥ "2z > K for every h i.e.!0 dVNz > K.

16 Since d < 1.
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v

European Put

Fig. 2.15. Graph of the binomial price (dotted line) of an American Put option
as a function of the price x of the underlying asset. The broken line represents the
graph of the corresponding European Put option

Further, by (2.174) it is obvious that P¥(0) = ﬁ To prove (2.176), let
7

us consider the continuous convex function®
g(x) = PP(x) — (K —x),  x€[0,K]

Since ¢(0) < 0 and g(K) > 0, by continuity ¢ is null in at least one point: it
remains to be seen whether such a point is unique. We put

zo = inf{z | g(x) > 0}, x1 =sup{z | g(x) < 0}.

By continuity g(zg) = g(z1) = 0 and z¢ < z1: we want to prove that ¢ = 1.
If this were not the case, i.e. zy < x1, by the convexity of g we would have

0= g(x) < tg(0) + (1 = t)g(z1) = tg(0) <0
for some t €]0,1[ and this is a contradiction. This concludes the proof of the
first part of the proposition.

The continuity of the function P4 follows from (2.140) which recursively
defines P# as the composition of continuous functions. The facts that the
price function is convex and monotone decreasing follow from (2.175) since
the functions

(K — .Z"(/JV)+:|
(I+r)yv
are convex and decreasing and their least upper bound, when v varies, pre-
serves such properties.

mHEQ[

T The sum of convex functions is convex.
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Now, by (2.175), PA(z) = 0 if and only if
K —av,)*t
e {<w>} —0 (2.177)
1+r)y

for every v € 7. The expectation in (2.177) is a sum of terms of the form
Con (K —uld"=hz)* | with ¢,, positive constants. So PA(z) = 0 if and only if
uhd" "y > K for every'® n,k ie. if dVx > K.

Finally let us consider the function

flz) = PHz) - (K —x)*.
By (2.140) f > 0 and since v > 0, we have

f(0)=K sup EX[(1+7)""] - K =0,
veTy

that is P4(0) = K. Further

= K su Q 7(171&”)*
J(K) = K sup E hmﬂz

(for v =1)

For x > K we obviously have f(x) = PA(z) > (K — x)* = 0. We put
" =inf{x € [0,K] | f(z) > 0}.

On the grounds of what we have already proved, we have 0 < z* < K and,
by definition, f = 0 over [0, z*]. Finally we have that f > 0 over |z*, K|; we
prove this last fact by contradiction. Let us suppose that f(z1) = 0 for some
x1 €a*, K[. By the definition of z*, there exists z¢p < x; such that f(xg) > 0.
Now we note that, over the interval [0, K], the function f is convex and so

0 < flwo) <tf(z)+ (1 —t)f(x1) = (1 —1)f(21)

if xg =t 4+ (1 — t)zq, t €]0,1[. This concludes the proof. O

18 Quch that 0 < k <n < N.
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Continuous-time stochastic processes

In this chapter we introduce the elements of the theory of stochastic processes
that we will use in continuous-time financial models. After a general presen-
tation, we define the one-dimensional Brownian motion and we discuss some
equivalence notions among stochastic processes. The most substantial part of
the chapter is devoted to the study of the first and the second variation of a
process: such a concept is introduced at first in the framework of the classical
function theory and for Riemann-Stieltjes integration. Afterwards, we extend
our analysis to the Brownian motion by determining its quadratic-variation
process.

3.1 Stochastic processes and real Brownian motion
Let (£2, F, P) be a probability space and I a real interval of the form [0, 7] or
Rso.

Definition 3.1 A measurable stochastic process (in what follows, simply a
stochastic process) on RN is a collection (X{)ier of random variables with
values in RN such that the map

X:Ix2—RN, X(t,w) = X¢(w),

is measurable with respect to the product o-algebra B(I) @ F. We say that X
is integrable if X; € L*(£2, P) for everyt € I.

The concept of stochastic process extends that of deterministic function
f:1— RN,

Just as f associates ¢ to the variable (the number) f(¢) in RY, similarly the
stochastic process associates t to the random variable X, in RY. A stochastic
process can be used to describe a random phenomenon that evolves in time:
for example, we can interpret a positive random variable X; as the price of
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